Lớp 12 - Toán học - Nâng cao Giải bài tập trắc nghiệm khách quan trang 178, 179 SGK Giải tích 12 Nâng cao
Bài tập trắc nghiệm khách quan chương III
Trong mỗi bài tập dưới đây, hãy chọn một phương án trong các phương án cho để được khẳng định đúng.
Bài 60 Trang 178 SGK Đại số và Giải tích 12 Nâng cao
Giả sử 5∫1dx2x−1=lnc. Giá trị của c là
(A) 9; (B) 3; (C) 81; (D) 8.
Giải
5∫1dx2x−1=12ln|2x−1||51=ln3lnc=ln3⇒c=3
Chọn (B).
Bài 61 Trang 178 SGK Đại số và Giải tích 12 Nâng cao
Giá trị của 2∫02e2xdx là
(A)e4; (B)e4−1;
(C)4e4; (D)3e4−1;
Giải
2∫02e2xdx=e2x|20=e4−1
Chọn (B).
Bài 62 Trang 178 SGK Đại số và Giải tích 12 Nâng cao
Giá trị của 0∫−1x2(x+1)3dx là:
(A)−710; (B)−610;
(C)215; (D)160.
Giải
0∫−1x2(x+1)3dx=0∫−1x2(x3+3x2+3x+1)dx=0∫−1(x5+3x4+3x3+x2)dx=(x66+3x55+3x44+x33)|0−1=160
Chọn (D).
Bài 63 Trang 178 SGK Đại số và Giải tích 12 Nâng cao
Diện tích hình phẳng nằm trong góc phần tư thứ nhất được giới hạn bởi đường thẳng y=4x và đồ thị hàm số y=x3 là:
(A) 4; (B) 5; (C) 3; (D) 3,5.
Giải
Phương trình hoành độ giao điểm của hai đồ thị
{x3=4xx≥0⇔[x=0x=2
Diện tích cần tìm là:
S=2∫0|4x−x3|dx=2∫0(4x−x3)dx
=(2x2−x44)|20=4
Chọn (A).
Bài 64 Trang 178 SGK Đại số và Giải tích 12 Nâng cao

Diện tích hình phẳng nằm trong góc phần tư thứ nhất được giới hạn bới hai đường thẳng y=8x,y=x và đồ thị hàm số y=x3 là:
(A) 12; (B) 15,75; (C) 6,75; (D) 4
Giải
x3=8x⇔[x=0x=2√2x=−2√2(loại)x3=x⇔[x=0x=1x=−1(loại)
S=2√2∫0(8x−x3)dx−1∫0(x−x3)dx=(4x2−x44)|2√20−(12x2−14x4)|10=(32−16)−(12−14)=16−14=15,75
Chọn (B).
Bài 65 Trang 178 SGK Đại số và Giải tích 12 Nâng cao
Diện tích hình phẳng nằm trong góc phần tư thứ nhất được giới hạn bởi đường thẳng y=2x và đồ thị hàm số y=x2 là:
(A)43; (B)32;
(C)53; (D)2315.
Giải
Phương trình hoành độ giao điểm:
2x=x2⇔[x=0x=2
S=2∫0(2x−x2)dx=(x2−x33)|20=43
Chọn (A)
Bài 66 Trang 179 SGK Đại số và Giải tích 12 Nâng cao
Cho hình phẳng A được giới hạn bởi đồ thị hàm hai số y=x2 và y=6−|x|. Thể tích khối tròn xoay tạo được khi quay A xung quanh trục tung:
(A)32π3; (B)9π;
(C)8π; (D)20π3.

Giải
y=6−|x|={6−x nếu x≥06+x nếu x<0
Giao điểm của (P) với đường thẳng y=6−x ( với x≥0) là:
{x2=6−xx≥0⇔x=2(y=4)
V=4∫0π(√y)2dy+6∫4π(6−y)2dy=π4∫0ydy+π6∫4(y−6)2dy=πy22|40+π13(y−6)3|64=8π+8π3=32π3
Chọn (A)
Bài 67 Trang 179 SGK Đại số và Giải tích 12 Nâng cao
Cho a,b là hai số dương. Gọi K là hình phẳng nằm trong góc phần tư thứ hai được giới hạn bởi parabol y=ax2 và đường thẳng y=−bx. Biết rằng thể tích khối tròn xoay tạo được khi quay K xung quanh trục hoành là một số không phụ thuộc vào giá trị của a và b. Khi đó a và b thỏa mãn điều kiện sau:
(A)b4=2a5; (B)b3=2a5;
(C)b5=2a3; (D)b4=2a2.
Giải

ax2=−bx⇔[x=0x=−ba
V=π0∫−ba(−bx)2dx−π0∫−ba(ax2)2dx
=π0∫−ba(b2x2−a2x4)dx=π(b2x33−a2x55)|0−ba
=−π(−b53a3+b55a3)=2πb515a3
Vì b5a3 là hằng số nên ta phải chọn (C).
Khi đó V=4π15.
congdong.edu.vn