Lớp 12 - Toán học - Nâng cao Giải bài 10, 11, 12 trang 190, 191 SGK Giải tích 12 Nâng cao
Bài 10 trang 190 SGK Đại số và Giải tích 12 Nâng cao
Chứng minh rằng với mọi số phức \(z \ne 1\), ta có: \(1 + z + {z^2} + ... + {z^9} = {{{z^{10}} - 1} \over {z - 1}}\).
Giải
Ta có: \(\left( {1 + z + {z^2} + ... + {z^9}} \right)\left( {z - 1} \right)\)
\(= z + {z^2} + ... + {z^{10}} - \left( {1 + z + {z^2} + ... + {z^9}} \right) \)
\(= {z^{10}} - 1\)
Vì \(z \ne 1\) nên chia hai vế cho \(z - 1\) ta được: \(1 + z + {z^2} + ... + {z^9} = {{{z^{10}} - 1} \over {z - 1}}\)
Bài 11 trang 191 SGK Đại số và Giải tích 12 Nâng cao
Hỏi mỗi số sau đây là số thực hay số ảo (z là số phức tùy ý cho trước sao cho biểu thức xác định)?
\({z^2} + {\left( {\overline z } \right)^2}\); \({{z - \overline z } \over {{z^3} + {{\left( {\overline z } \right)}^3}}}\); \({{{z^2} - {{\left( {\overline z } \right)}^2}} \over {1 + z\overline z }}\)
Giải
* Ta có \(\overline {{z^2} + {{\left( {\overline z } \right)}^2}} = \overline {{z^2}} + \overline {{{\left( {\overline z } \right)}^2}} = {\left( {\overline z } \right)^2} + {\left( {\overline {\overline z } } \right)^2} = {\left( {\overline z } \right)^2} + {z^2}\)
\( \Rightarrow {z^2} + {\left( {\overline z } \right)^2}\) là số thực.
Cách khác: Gọi \(z=a+bi\)
Ta có: \({z^2} + {\overline z ^2} = {\left( {a + bi} \right)^2} + {\left( {a - bi} \right)^2} = 2\left( {{a^2} - {b^2}} \right)\) là số thực
* \(\overline {\left( {{{z - \overline z } \over {{z^3} + {{\left( {\overline z } \right)}^3}}}} \right)} = {{\overline z - z} \over {{{\left( {\overline z } \right)}^3} + {z^3}}} = - {{z - \overline z } \over {{z^3} + {({\overline z })^3}}}\) \(\Rightarrow {{z - \overline z } \over {{z^3} + {({\overline z })^3}}}\) là số ảo.
* \(\overline {\left( {{{{z^2} - {{\left( {\overline z } \right)}^2}} \over {1 + z\overline z }}} \right)} = {{{({\overline z })^2} - {z^2}} \over {1 + \overline z z}} = - {{{z^2}-{({\overline z })^2}} \over {1 + \overline z .z}} \Rightarrow {{{z^2} - {{\left( {\overline z } \right)}^2}} \over {1 + z\overline z }}\) là số ảo.
Bài 12 trang 191 SGK Đại số và Giải tích 12 Nâng cao
Xác định tập hợp các điểm trong mặt phẳng phức biểu diễn các số phức \(z\) thỏa mãn từng điều kiện sau:
a) \(z^2\) là số thực âm;
b \(z^2\) là là số ảo;
c) \({z^2} = {\left( {\overline z } \right)^2}\);
d) \({1 \over {z - i}}\) là số ảo.
Giải
Giả sử \(z=x+yi\)
a) \({z^2} = {\left( {x + yi} \right)^2} = {x^2} - {y^2} + 2xyi\)
\(z^2\) là số thực âm\( \Leftrightarrow \left\{ \matrix{ xy = 0 \hfill \cr {x^2} - {y^2} < 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{ x = 0 \hfill \cr y \ne 0 \hfill \cr} \right.\)
Vậy tập hợp các điểm cần tìm là trục \(Oy\) trừ điểm \(O\).
b) \({z^2} = {x^2} - {y^2} + 2xyi\)
\(z^2\) là số ảo \( \Leftrightarrow {x^2} - {y^2} = 0 \Leftrightarrow x = y\) hoặc \(y = -x\)
Vậy tập hợp các điểm cần tìm là hai đường phân giác của các gốc tọa độ.
c)
Ta có \({z^2} = {\left( {\overline z } \right)^2} \Leftrightarrow {x^2} - {y^2} + 2xyi ={x^2} - {y^2} - 2xyi\)
\(\Leftrightarrow xy = 0 \Leftrightarrow \left[ \matrix{ x = 0 \hfill \cr y = 0 \hfill \cr} \right.\)
Vậy tập hợp các điểm cần tìm là các trục tọa độ.
d) \({1 \over {z - i}}\) là số ảo \( \Leftrightarrow z - i\) là số ảo và \(z \ne i \Leftrightarrow z\) là số ảo khác i.
Vậy tập hợp các điểm cầm tìm là trục ảo trừ điểm \(I(0; 1)\) biểu diễn số \(i\).
congdong.edu.vn