Lớp 12 - Toán học - Nâng cao Giải bài 20, 21, 22 trang 82 SGK Giải tích 12 Nâng cao
Bài 20 trang 82 SGK Đại số và Giải tích 12 Nâng cao
Tìm số thực \(\alpha \), thỏa mãn từng điều kiện sau:
a) \({1 \over 2}\left( {{a^\alpha } + {a^{ - \alpha }}} \right) = 1\,\,\left( {a > 0} \right);\)
b) \({3^{\left| \alpha \right|}} < 27.\)
Giải
a) \({1 \over 2}\left( {{a^\alpha } + {a^{ - \alpha }}} \right) = 1 \Leftrightarrow {a^\alpha } + {a^{ - \alpha }} - 2 = 0 \)
\(\Leftrightarrow {\left( {{a^{{\alpha \over 2}}} - {a^{ - {\alpha \over 2}}}} \right)^2} = 0 \Leftrightarrow {a^{{\alpha \over 2}}} = {a^{ - {\alpha \over 2}}}\)(*)
- Nếu \(a \ne \,1\) thì (*) \( \Leftrightarrow {\alpha \over 2} = - {\alpha \over 2} \Leftrightarrow \alpha = 0\)
- Nếu \(a = 1\) thì (*) \( \Leftrightarrow \alpha \) là số thực tùy ý.
b) \({3^{\left| \alpha \right|}} < 27 \Leftrightarrow {3^{\left| \alpha \right|}} < {3^3} \Leftrightarrow \left| \alpha \right| < 3 \Leftrightarrow - 3 < \alpha < 3.\)
Bài 21 trang 82 SGK Đại số và Giải tích 12 Nâng cao
Giải các phương trình sau bằng cách đặt \(t = \root 4 \of x \):
a) \(\sqrt x + \root 4 \of x = 2;\)
b) \(\sqrt x - 3\root 4 \of x + 2 = 0\).
Giải
a) Điều kiện \(x \ge 0\)
Đặt \(t = \root 4 \of x \left( {t \ge 0} \right)\), ta được phương trình \({t^2} + t = 2\).
Ta có
\({t^2} + t = 2 \Leftrightarrow {t^2} + t - 2 = 0 \Leftrightarrow \left[ \matrix{
t = 1 \hfill \cr
t = - 2\text{ loại } \hfill \cr} \right.\) \( \Leftrightarrow \root 4 \of x = 1 \Leftrightarrow x = 1\)
Vậy tập nghiệm phương trình là S =\(\left\{ 1 \right\}\)
b) Điều kiện \(x \ge 0\). Đặt \(t = \root 4 \of x \,\,\left( {t \ge 0} \right)\) ta được phương trình
\({t^2} - 3t + 2 = 0 \Leftrightarrow \left[ \matrix{
t = 1 \hfill \cr
t = 2 \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
\root 4 \of x = 1 \hfill \cr
\root 4 \of x = 2 \hfill \cr} \right. \)
\(\Leftrightarrow \left[ \matrix{
x = 1 \hfill \cr
x = 16 \hfill \cr} \right.\)
Vậy \(S = \left\{ {1;16} \right\}\)
Bài 22 trang 82 SGK Đại số và Giải tích 12 Nâng cao
Giải các bất phương trình sau:
\(a){x^4} < 3;\) \(b){x^{11}} \ge 7;\)
\(c){x^{10}} > 2;\) \(d){x^3} \le 5;\)
Giải
\(a)\,\,{x^4} < 3 \Leftrightarrow \left| x \right| < \root 4 \of 3 \Leftrightarrow - \root 4 \of 3 < x < \root 4 \of 3 \).
Tập nghiệm \(S = \left( { - \root 4 \of 3 ;\root 4 \of 3 } \right)\)
\(b)\,\,{x^{11}} \ge 7 \Leftrightarrow x \ge \root {11} \of 7 ;\)
Vậy \(S = \left[ {\root {11} \of 7 ; + \infty } \right)\)
\(c)\,\,{x^{10}} > 2 \Leftrightarrow \left| x \right| > \root {10} \of 2 \Leftrightarrow \left[ \matrix{
x < - \root {10} \of 2 \hfill \cr
x > \root {10} \of 2 \hfill \cr} \right..\)
Vậy \(S = \left( { - \infty ; - \root {10} \of 2 } \right) \cup \left( {\root {10} \of 2 ; + \infty } \right)\)
\(d)\,\,{x^3} \le 5 \Leftrightarrow x \le \root 3 \of 5 \,\,\,\text{ Vậy } S = \left( { - \infty ;\root 3 \of 5 } \right)\)
congdong.edu.vn