Lớp 12 - Toán học - Nâng cao Giải bài 29, 30, 31, 32 trang trang 172, 173 SGK Giải tích 12 Nâng cao
Bài 29 Trang 172 SGK Đại số và Giải tích 12 Nâng cao
Tính thể tích của vật thể nằm giữa hai mặt phẳng \(x = -1\) và \(x = 1\), biết rằng thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với trục \(Ox\) tại điểm có hoành độ \(x( - 1 \le x \le 1)\) là một hình vuông cạnh là \(2\sqrt {1 - {x^2}} \).
Giải
\(S(x) = {(2\sqrt {1 - {x^2}} )^2} = 4(1 - {x^2})\)
Ta có: \(V = \int\limits_{ - 1}^1 {4(1 - {x^2})dx = } \left. {\left( {4x - {{4{x^3}} \over 3}} \right)} \right|_{ - 1}^1 = {{16} \over 3}.\)
Bài 30 Trang 172 SGK Đại số và Giải tích 12 Nâng cao
Tính thể tích của vật thể nằm giữa hai mặt phẳng \(x = 0\) và \(x = \pi \), biết rằng thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với trục \(Ox\) tại điểm có hoành độ \(x\;(0 \le x \le \pi )\) là một tam giác đều cạnh \(2\sqrt {{\mathop{\rm s}\nolimits} {\rm{inx}}} \).
Giải
Ta có: \(S(x) = {(2\sqrt {{\mathop{\rm s}\nolimits} {\rm{inx}}} )^2}.{{\sqrt 3 } \over 4} = \sqrt 3 {\mathop{\rm s}\nolimits} {\rm{inx}}\)
Do đó: \(V = \int\limits_0^\pi {S(x)dx = \int\limits_0^\pi {\sqrt 3 } } \sin {\rm{x}}dx = - \sqrt 3 \cos x\mathop |\nolimits_0^\pi \)
\(= 2\sqrt 3 \)
Bài 31 Trang 172 SGK Đại số và Giải tích 12 Nâng cao
Cho hình phẳng \(A\) giới hạn bởi các đường \(y = 0, x = 4\), và \(y = \sqrt x - 1\). Tính thể tích của khối tròn xoay tạo thành khi quay hình \(A\) quanh trục hoành.
Giải
Hoành độ giao điểm của đường thẳng với trục hoành
\(\eqalign{
& \sqrt x - 1 = 0 \Leftrightarrow x = 1 \cr
& V = \pi \int\limits_1^4 {{{(\sqrt x - 1)}^2}} dx = \pi \int\limits_1^4 {(x - 2\sqrt x } + 1)dx\cr& = \left. {\pi \left( {{{{x^2}} \over 2} - {4 \over 3}x\sqrt x + x} \right)} \right|_1^4 = {{7\pi } \over 6} \cr} \)
Bài 32 Trang 173 SGK Đại số và Giải tích 12 Nâng cao
Cho hình phẳng B giới hạn bởi các đường \(x = {2 \over y},y = 1\) và \(y=4\). Tính thể tích của khối tròn xoay tạo thành khi quay hình B quanh trục tung.
Giải
Ta có \(V = \pi {\int\limits_1^4 {\left( {{2 \over y}} \right)} ^2}dy = 4\pi \int\limits_1^4 {{{dy} \over {{y^2}}}} = \left. {4\pi \left( { - {1 \over y}} \right)} \right|_1^4 = 3\pi \)
congdong.edu.vn