Danh mục menu
Lớp 12 - Toán học - Nâng cao Giải bài 29, 30, 31, 32 trang trang 172, 173 SGK Giải tích 12 Nâng cao

Bài 29 Trang 172 SGK Đại số và Giải tích 12 Nâng cao

Tính thể tích của vật thể nằm giữa hai mặt phẳng \(x = -1\) và \(x = 1\), biết rằng thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với trục \(Ox\) tại điểm có hoành độ \(x( - 1 \le x \le 1)\) là một hình vuông cạnh là \(2\sqrt {1 - {x^2}} \).

Giải

\(S(x) = {(2\sqrt {1 - {x^2}} )^2} = 4(1 - {x^2})\)

Ta có: \(V = \int\limits_{ - 1}^1 {4(1 - {x^2})dx = } \left. {\left( {4x - {{4{x^3}} \over 3}} \right)} \right|_{ - 1}^1 = {{16} \over 3}.\)

Bài 30 Trang 172 SGK Đại số và Giải tích 12 Nâng cao

Tính thể tích của vật thể nằm giữa hai mặt phẳng \(x = 0\) và \(x = \pi \), biết rằng thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với trục \(Ox\) tại điểm có hoành độ \(x\;(0 \le x \le \pi )\) là một tam giác đều cạnh \(2\sqrt {{\mathop{\rm s}\nolimits} {\rm{inx}}} \).

Giải

Ta có: \(S(x) = {(2\sqrt {{\mathop{\rm s}\nolimits} {\rm{inx}}} )^2}.{{\sqrt 3 } \over 4} = \sqrt 3 {\mathop{\rm s}\nolimits} {\rm{inx}}\)

Do đó: \(V = \int\limits_0^\pi {S(x)dx = \int\limits_0^\pi {\sqrt 3 } } \sin {\rm{x}}dx = - \sqrt 3 \cos x\mathop |\nolimits_0^\pi \)

\(= 2\sqrt 3 \)

Bài 31 Trang 172 SGK Đại số và Giải tích 12 Nâng cao

Cho hình phẳng \(A\) giới hạn bởi các đường \(y = 0, x = 4\), và \(y = \sqrt x - 1\). Tính thể tích của khối tròn xoay tạo thành khi quay hình \(A\) quanh trục hoành.

Giải

Hoành độ giao điểm của đường thẳng với trục hoành

\(\eqalign{
& \sqrt x - 1 = 0 \Leftrightarrow x = 1 \cr
& V = \pi \int\limits_1^4 {{{(\sqrt x - 1)}^2}} dx = \pi \int\limits_1^4 {(x - 2\sqrt x } + 1)dx\cr& = \left. {\pi \left( {{{{x^2}} \over 2} - {4 \over 3}x\sqrt x + x} \right)} \right|_1^4 = {{7\pi } \over 6} \cr} \)

Bài 32 Trang 173 SGK Đại số và Giải tích 12 Nâng cao

Cho hình phẳng B giới hạn bởi các đường \(x = {2 \over y},y = 1\) và \(y=4\). Tính thể tích của khối tròn xoay tạo thành khi quay hình B quanh trục tung.

Giải

Ta có \(V = \pi {\int\limits_1^4 {\left( {{2 \over y}} \right)} ^2}dy = 4\pi \int\limits_1^4 {{{dy} \over {{y^2}}}} = \left. {4\pi \left( { - {1 \over y}} \right)} \right|_1^4 = 3\pi \)

                                                                                        congdong.edu.vn


Giáo trình
Thể loại: Lớp 12
Số bài: 120

Bạn cần hỗ trợ? Nhấc máy lên và gọi ngay cho chúng tôi -hotline@tnn.vn
hoặc

  Hỗ trợ trực tuyến

Giao hàng toàn quốc

Bảo mật thanh toán

Đổi trả trong 7 ngày

Tư vẫn miễn phí