Danh mục menu
Lớp 12 - Toán học - Nâng cao Giải bài 37, 38, 39 trang 208, 209 SGK Giải tích 12 Nâng cao

Bài 37 trang 208 SGK giải tích 12 nâng cao

Tìm phần thực, phần ảo của mỗi số phức sau:

\(a)\,{\left( {2 - 3i} \right)^3}\,;\)

\(b)\,{{3 + 2i} \over {1 - i}} + {{1 - i} \over {3 - 2i}}\,;\)

\(c)\,{\left( {x + iy} \right)^2} - 2\left( {x + iy} \right) + 5\,\,\left( {x,y \in\mathbb R} \right).\)

Với x,y nào thì số phức đó là số thực?

Giải

\(a)\,{\left( {2 - 3i} \right)^3} = {2^3} - 3.2.3i\left( {2 - 3i} \right) - {\left( {3i} \right)^3} \)

\(= 8 - 18i\left( {2 - 3i} \right) + 27i = - 46 - 9i\)

Vậy phần thực là \(-46\), phần ảo là \(-9\).

\(\eqalign{ & b)\,{{3 + 2i} \over {1 - i}} = {{\left( {3 + 2i} \right)\left( {1 + i} \right)} \over 2} = {{1 + 5i} \over 2} = {1 \over 2} + {5 \over 2}i \cr & {{1 - i} \over {3 - 2i}} = {{\left( {1 - i} \right)\left( {3 + 2i} \right)} \over {13}} = {{5 - i} \over {13}} = {5 \over {13}} - {1 \over {13}}i \cr} \)

Do đó \(\,{{3 + 2i} \over {1 - i}} + {{1 - i} \over {3 - 2i}}\, ={1 \over 2} + {5 \over 2}i +{5 \over {13}} - {1 \over {13}}i = {{23} \over {26}} + {{63} \over {26}}i\)

Vậy phần thực là \({{23} \over {26}}\), phần ảo là \({{63} \over {26}}\)

\(c)\,\,{\left( {x + iy} \right)^2} - 2\left( {x + iy} \right) + 5 \)

\(= {x^2} - {y^2} - 2x + 5 + 2y\left( {x - 1} \right)i\)

Vậy phần thực là \({x^2} - {y^2} - 2x + 5\), phần ảo là \(2y\left( {x - 1} \right)\).

Số phức đó là số thực khi vào chỉ khi \(2y\left( {x - 1} \right) = 0 \Leftrightarrow y = 0\) hoặc \(x = 1\).

Bài 38 trang 209 SGK giải tích 12 nâng cao

Chứng minh rằng \(\left| z \right| = \left| {\rm{w}} \right| = 1\) thì số \({{z + {\rm{w}}} \over {1 + z{\rm{w}}}}\) là số thực (giả sử \(1 + z{\rm{w}} \ne 0\)).

Giải

Ta có \(z.\overline z = {\left| z \right|^2} = 1 \Rightarrow \overline z = {1 \over z}\). Tương tự \(\overline {\rm{w}} = {1 \over {\rm{w}}}\)

Do đó \(\overline {\left( {{{z + {\rm{w}}} \over {1 + z{\rm{w}}}}} \right)} = {{\overline z + \overline {\rm{w}} } \over {1 + \overline z .\overline {\rm{w}} }} = {{{1 \over z} + {1 \over {\rm{w}}}} \over {1 + {1 \over z}.{1 \over {\rm{w}}}}} = {{z + {\rm{w}}} \over {1 + z{\rm{w}}}}\).

Suy ra \({{z + {\rm{w}}} \over {1 + z{\rm{w}}}}\) là số thực.

Bài 39 trang 209 SGK giải tích 12 nâng cao

Giải các phương trình sau trên C:

\(\eqalign{ & a)\,{\left( {z + 3 - i} \right)^2} - 6\left( {z + 3 - i} \right) + 13 = 0; \cr & b)\,\left( {{{iz + 3} \over {z - 2i}}} \right)^2 - 3{{iz + 3} \over {z - 2i}} - 4 = 0; \cr} \)

\(c)\,\,{\left( {{z^2} + 1} \right)^2} + {\left( {z + 3} \right)^2} = 0.\)

Giải

a) Đặt \({\rm{w}} = z + 3 - i\) ta được phương trình:

\(\eqalign{ & {{\rm{w}}^2} - 6{\rm{w}}+ 13 = 0 \Leftrightarrow {\left( {{\rm{w}} - 3} \right)^2} = - 4 = 4{i^2} \cr & \Leftrightarrow \left[ \matrix{ {\rm{w}} = 3 + 2i \hfill \cr {\rm{w}} = 3 - 2i \hfill \cr} \right. \Leftrightarrow \left[ \matrix{ z + 3 - i = 3 + 2i \hfill \cr z + 3 - i = 3 - 2i \hfill \cr} \right.\cr&\Leftrightarrow \left[ \matrix{ z = 3i \hfill \cr z = - i \hfill \cr} \right. \cr} \)

Vậy \(S = \left\{ { - i;3i} \right\}\)

b) Đặt \({\rm{w}} = {{iz + 3} \over {z - 2i}}\) ta được phương trình: \({{\rm{w}}^2} - 3{\rm{w}} - 4 = 0 \Leftrightarrow \left[ \matrix{ {\rm{w}} = - 1 \hfill \cr {\rm{w}} = 4 \hfill \cr} \right.\)

Với \({\rm{w}} = -1\) ta có \({{iz + 3} \over {z - 2i}} = - 1 \Leftrightarrow iz + 3 = - z + 2i\)

\( \Leftrightarrow \left( {i + 1} \right)z = - 3 + 2i\)

\(\Leftrightarrow z = {{ - 3 + 2i} \over {1 + i}} = {{\left( { - 3 + 2i} \right)\left( {1 - i} \right)} \over 2} = {{ - 1 + 5i} \over 2}\)

Với \({\rm{w}} = 4\) ta có \({{iz + 3} \over {z - 2i}} = 4 \Leftrightarrow \left( {4 - i} \right)z = 3 + 8i\)

\( \Leftrightarrow z = {{3 + 8i} \over {4 - i}} = {{\left( {3 + 8i} \right)\left( {4 + i} \right)} \over {17}} = {{4 + 35i} \over {17}}\)

Vậy \(S = \left\{ {{{ - 1 + 5i} \over 2};{{4 + 35} \over {17}}} \right\}\)

\(c)\,{\left( {{z^2} + 1} \right)^2} + {\left( {z + 3} \right)^2} = {\left( {{z^2} + 1} \right)^2} - {\left[ {i\left( {z + 3} \right)} \right]^2}\)

\( = \left( {{z^2} + 1 + i\left( {z + 3} \right)} \right)\left( {{z^2} + 1 - i\left( {z + 3} \right)} \right) = 0\)

\(\Leftrightarrow\left[ \matrix{ {z^2} + 1 + i\left( {z + 3} \right) = 0\,\,\left( 1 \right) \hfill \cr {z^2} + 1 - i\left( {z + 3} \right) = 0\,\,\,\left( 2 \right) \hfill \cr} \right.\)

Phương trình (1) là phương trình bậc hai \({z^2} + iz + 1 + 3i = 0\);

\(\Delta = - 5 - 12i = {\left( {2 - 3i} \right)^2}\)

Phương trình có hai nghiệm là \({z_1} = 1 - 2i\) và \({z_2} = - 1 + i\).

Phương trình (2) là phương trình bậc hai \({z^2} - iz + 1 - 3i = 0\);

\(\Delta = - 5 + 12i = {\left( {2 + 3i} \right)^2}\)

Phương trình có hai nghiệm là \({z_3} = 1 + 2i\) và \({z_4} = - 1 - i\)

Vậy \(S = \left\{ {1 - 2i; - 1 + i;1 + 2i; - 1 - i} \right\}\)

                                                                                                  congdong.edu.vn


Giáo trình
Thể loại: Lớp 12
Số bài: 120

Bạn cần hỗ trợ? Nhấc máy lên và gọi ngay cho chúng tôi -hotline@tnn.vn
hoặc

  Hỗ trợ trực tuyến

Giao hàng toàn quốc

Bảo mật thanh toán

Đổi trả trong 7 ngày

Tư vẫn miễn phí