Danh mục menu
Lớp 12 - Toán học - Nâng cao Bài 9, 10, 11 trang 81 SGK Hình học 12 Nâng cao

Bài 9 trang 81 SGK Hình học 12 Nâng cao

Xét sự đồng phẳng của ba vectơ \(\overrightarrow u ,\overrightarrow v \) và \(\overrightarrow {\rm{w}} \) trong mỗi trường hợp sau:

a) \(\overrightarrow u \left( {4;3;4} \right)\,,\,\overrightarrow v \left( {2; - 1;2} \right)\,;\,\overrightarrow {\rm{w}} \left( {1;2;1} \right)\)

b) \(\overrightarrow u \left( {1; - 1;1} \right)\,;\,\overrightarrow v \left( {0;1;2} \right)\,;\,\overrightarrow {\rm{w}} \left( {4;2;3} \right)\)

c) \(\overrightarrow u \left( {4;2;5} \right)\,;\,\overrightarrow v \left( {3;1;3} \right)\,;\,\overrightarrow {\rm{w}} \left( {2;0;1} \right)\)

Giải

a) Ta có:

\(\eqalign{
& \left[ {\overrightarrow u ,\overrightarrow v } \right] = \left( {\left| \matrix{
3\,\,\,\,\,\,4 \hfill \cr
- 1\,\,\,2 \hfill \cr} \right|;\left| \matrix{
4\,\,\,\,\,4 \hfill \cr
2\,\,\,\,\,\,2 \hfill \cr} \right|;\left| \matrix{
4\,\,\,\,\,\,3 \hfill \cr
2\,\,\,\,\,\,\, - 1 \hfill \cr} \right|} \right) \cr&= \left( {10;0; - 10} \right) \cr
& \Rightarrow \left[ {\overrightarrow u ,\overrightarrow v } \right].\overrightarrow {\rm{w}} = 10.1 + 0.2 - 10.1 = 0 \cr} \)

Do đó \(\overrightarrow u ,\overrightarrow v ,\overrightarrow {\rm{w}} \) đồng phẳng.

b) \(\left[ {\overrightarrow u ,\overrightarrow v } \right].\overrightarrow {\rm{w}} \ne 0 \Rightarrow \overrightarrow u ,\overrightarrow v ,\overrightarrow {\rm{w}} \) không đồng phẳng.

c) \(\left[ {\overrightarrow u ,\overrightarrow v } \right].\overrightarrow {\rm{w}} = 0 \Rightarrow \overrightarrow u ,\overrightarrow v ,\overrightarrow {\rm{w}} \) đồng phẳng.

Bài 10 trang 81 SGK Hình học 12 Nâng cao

Cho ba điểm \(A\left( {1;0;0} \right)\,;\,B\left( {0;0;1} \right)\,;\,C\left( {2;1;1} \right)\)
a) Chứng minh A, B, C không thẳng hàng.
b) Tính chu vi và diện tích tam giác ABC.
c) Tính độ dài đường cao của tam giác ABC kẻ từ đỉnh A.
d) Tính các góc của tam giác ABC.

Giải

a) Ta có \(\overrightarrow {BA} = \left( {1;0; - 1} \right),\overrightarrow {BC} = \left( {2;1;0} \right)\).
Vì \({1 \over 2} \ne {0 \over 1} \Rightarrow \overrightarrow {BA} ,\overrightarrow {BC} \) không cùng phương do đó A, B, C thẳng hàng.
b) Ta có

\(\eqalign{
& AB = \sqrt {{1^2} + {0^2} + {{\left( { - 1} \right)}^2}} = \sqrt 2 \cr
& BC = \sqrt {{2^2} + {1^2} + {0^2}} = \sqrt 5 \cr
& AC = \sqrt {{1^2} + {1^2} + {1^2}} = \sqrt 3 \cr} \)

Vậy chu vi tam giác ABC bằng \(\sqrt 2 + \sqrt 3 + \sqrt 5 \).
Ta có \(B{C^2} = A{B^2} + A{C^2} \Rightarrow \Delta ABC \) vuông tại A nên có diện tích \(S = {1 \over 2}AB.AC = {{\sqrt 6 } \over 2}\)
c) Gọi \({h_a}\) là độ dài đường cao kẻ từ A ta có:
\({S_{ABC}} = {1 \over 2}BC.{h_a} \Rightarrow {h_a} = {{2{S_{ABC}}} \over {BC}} = {{\sqrt 6 } \over {\sqrt 5 }} = {{\sqrt {30} } \over 5}\)
d) Vì tam giác ABC vuông tại A nên:

\(\cos B = {{AB} \over {BC}} = {{\sqrt 2 } \over {\sqrt 5 }} = {{\sqrt {10} } \over 5}\,;\)

\(\cos C = {{AC} \over {BC}} = {{\sqrt 3 } \over {\sqrt 5 }} = {{\sqrt {15} } \over 5}\)

Bài 11 trang 81 SGK Hình học 12 Nâng cao

Cho bốn điểm A(1 ; 0 ; 0), B(0 ; 1 ; 0), C(0 ; 0 ; 1) và D(-2 ; 1 ; -2).

a) Chứng minh rằng A, B, C, D là bốn đỉnh của một hình tứ diện.

b) Tính góc giữa các đường thẳng chứa các cạnh đối của tứ diện đó.

c) Tính thể tích tứ diện ABCD và độ dài đường cao của tứ diện kẻ từ đỉnh A.

Giải

a) Ta có:

\(\eqalign{
& \overrightarrow {AB} = \left( { - 1;1;0} \right),\overrightarrow {AC} = \left( { - 1;0;1} \right),\cr&\overrightarrow {AD} = \left( { - 3;1; - 2} \right) \cr
& \left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( {\left| \matrix{
1\,\,\,\,\,\,0 \hfill \cr
0\,\,\,\,\,1 \hfill \cr} \right|;\left| \matrix{
0\,\,\,\, - 1 \hfill \cr
1\,\,\,\,\, - 1 \hfill \cr} \right|;\left| \matrix{
- 1\,\,\,\,\,\,1 \hfill \cr
- 1\,\,\,\,\,\,\,0 \hfill \cr} \right|} \right)\cr& = \left( { - 3;1; - 2} \right) \cr
& \Rightarrow \left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right].\overrightarrow {AD} = - 3.1 + 1.1 - 2.1 = - 4 \ne 0 \cr} \)

Do đó ba vectơ \(\overrightarrow {AB} ,\overrightarrow {AC} ,\overrightarrow {AD} \) không đồng phẳng. Vậy A, B, C, D là 4 đỉnh của một tứ diện.

b) Ta có \(\overrightarrow {CD} = \left( { - 2;1; - 3} \right),\overrightarrow {BD} = \left( { - 2;0; - 2} \right),\)

\(\overrightarrow {BC} = \left( {0; - 1;1} \right)\).

Gọi \(\alpha ,\beta ,\gamma \) lần lượt là góc tạo bởi các cặp đường thẳng AB và CD, AC và BD, AD và BC thì

\(\eqalign{
& \cos \alpha = \left| {\cos \left( {\overrightarrow {AB} ,\overrightarrow {CD} } \right)} \right| = {{\left| {2 + 1 + 0} \right|} \over {\sqrt 2 .\sqrt {14} }} = {{3\sqrt 7 } \over {14}} \cr
& \cos \beta = \left| {\cos \left( {\overrightarrow {AC} ,\overrightarrow {BD} } \right)} \right| = {{\left| {2 + 0 - 2} \right|} \over {\sqrt 2 .\sqrt 8 }} = 0 \cr&\Rightarrow AC \bot BD \cr
& \cos \gamma = \left| {\cos \left( {\overrightarrow {AD} ,\overrightarrow {BC} } \right)} \right| = {{\left| {0 - 1 - 2} \right|} \over {\sqrt 2 .\sqrt {14} }} = {{3\sqrt 7 } \over {14}} \cr} \)

c) Thể tích tứ diện ABCD là: \(V = {1 \over 6}\left| {\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right].\overrightarrow {AD} } \right| = {1 \over 6}\left| { - 4} \right| = {2 \over 3}\)

Gọi \({h_A}\) là đường cao của tứ diện kẻ từ đỉnh A.
Ta có:

\(\eqalign{
& V = {1 \over 3}{h_A}.{S_{BCD}} \Rightarrow {h_A} = {{3V} \over {{S_{BCD}}}} \cr
& {S_{BCD}} = {1 \over 2}\left| {\left[ {\overrightarrow {BC} ,\overrightarrow {BD} } \right]} \right| = \sqrt 3 \cr} \)

Vậy \({h_A} = {{3.{2 \over 3}} \over {\sqrt 3 }} = {{2\sqrt 3 } \over 3}\)

                                                                                                 congdong.edu.vn


Giáo trình
Thể loại: Lớp 12
Số bài: 120

Bạn cần hỗ trợ? Nhấc máy lên và gọi ngay cho chúng tôi -hotline@tnn.vn
hoặc

  Hỗ trợ trực tuyến

Giao hàng toàn quốc

Bảo mật thanh toán

Đổi trả trong 7 ngày

Tư vẫn miễn phí