Danh mục menu
Lớp 12 - Toán học - Nâng cao Giải bài 32, 33, 34, 35 trang 104 SGK Hình học 12 Nâng cao

Bài 32 trang 104 SGK Hình học 12 Nâng cao

Cho đường thẳng d và mặt phẳng \(\left( \alpha \right)\) có phương trình:

\(d:{{x - 2} \over 2} = {{y + 1} \over 3} = {{z - 1} \over 5}\,\,;\,\,\left( \alpha \right):2x + y + z - 8 = 0\).
a) Tìm góc giữa d và \(\left( \alpha \right)\).
b) Tìm tọa độ giao điểm của d và \(\left( \alpha \right)\).
c) Viết phương trình hình chiếu vuông góc của d trên \(\left( \alpha \right)\).

Giải

a) Đường thẳng d có vectơ chỉ phương \(\overrightarrow u = \left( {2;3;5} \right)\), \(mp\left( \alpha \right)\) có vectơ pháp tuyến \(\overrightarrow n = \left( {2;1;1} \right)\). Gọi \(\varphi \) là góc giữa d và \(\left( \alpha \right)\) thì \(0 \le \varphi \le {90^0}\) và
\(\sin \varphi = {{\left| {\overrightarrow u .\overrightarrow n } \right|} \over {\left| {\overrightarrow u } \right|\left| {\overrightarrow n } \right|}} = {{\left| {2.2 + 3.1 + 5.1} \right|} \over {\sqrt {4 + 9 + 25} .\sqrt {4 + 1 + 1} }} = {6 \over {\sqrt {57} }}\).
b) d có phương trình tham số

\(\left\{ \matrix{
x = 2 + 2t \hfill \cr
y = - 1 + 3t \hfill \cr
z = 1 + 5t \hfill \cr} \right.\).

Thay x, y, z vào phương trình \(\left( \alpha \right)\) ta có:

\(2\left( {2 + 2t} \right) + \left( { - 1 + 3t} \right) + \left( {1 + 5t} \right) = 0 \Leftrightarrow t = {1 \over 3}\)

Ta được giao điểm \(M\left( {{8 \over 3};0;{8 \over 3}} \right)\).
c) Gọi \(\left( \beta \right)\) là mặt phẳng đi qua d và vuông góc với \(\left( \alpha \right)\) thì hình chiếu d’ của d trên \(\left( \alpha \right)\) là giao tuyến của \(\left( \alpha \right)\) và \(\left( \beta \right)\). Bởi vậy ta cần tìm phương trình của \(\left( \beta \right)\). Vectơ pháp tuyến \(\overrightarrow {{n_{(\beta )}}} \) của \(\left( \beta \right)\) vuông góc với cả \(\overrightarrow u \) và \(\overrightarrow n \) nên ta chọn \(\overrightarrow {{n_\beta }} = \left[ {\overrightarrow u ,\overrightarrow n } \right] = \left( { - 2;8; - 4} \right)\). Ngoài ra, \(\left( \beta \right)\) đi qua d nên cũng đi qua điểm \(A\left( {2; - 1;1} \right)\). Do đó \(\left( \beta \right)\) có phương trình:
\( - 2\left( {x - 2} \right) + 8\left( {y + 1} \right) - 4\left( {z - 1} \right) = 0\)

\(\Leftrightarrow - x + 4y - 2z + 8 = 0\).
Hình chiếu d’ qua I và có vectơ chỉ phương:

\(\overrightarrow a = \left[ {\overrightarrow {{n_\alpha }} ;\overrightarrow {{n_\beta }} } \right] \)

\(= \left( {\left| \matrix{
1\,\,\,\,\,\,\,\,\,\,\,1 \hfill \cr
4\,\,\,\,\,\, - 2 \hfill \cr} \right|;\,\left| \matrix{
1\,\,\,\,\,\,\,\,2 \hfill \cr
- 2\,\,\,\,\, - 1\, \hfill \cr} \right|;\left| \matrix{
2\,\,\,\,\,\,\,\,1 \hfill \cr
- 1\,\,\,\,\,4 \hfill \cr} \right|} \right) \)

\(= \left( { - 6;3;9} \right) = 3\left( { - 2;1;3} \right)\)

Vậy d’ có phương trình tham số là

\(\left\{ \matrix{
x = {8 \over 3} - 2t \hfill \cr
y = t \hfill \cr
z = {8 \over 3} + 3t \hfill \cr} \right.\)

Bài 33 trang 104 SGK Hình học 12 Nâng cao

Cho đường thẳng \(\Delta \) và mp(P) có phương trình:
\(\Delta :{{x - 1} \over 1} = {{y - 2} \over 2} = {{z - 3} \over 2}\,\,;\,\,\left( P \right):2x + z - 5 = 0\).
a) Xác định tọa độ giao điểm A của \(\Delta \) và (P).
b) Viết phương trình đường thẳng đi qua A, nằm trong (P) và vuông góc với \(\Delta \).

Giải

a) Phương trình tham số của \(\Delta \) là:

\(\left\{ \matrix{
x = 1 + t \hfill \cr
y = 2 + 2t \hfill \cr
z = 3 + 2t \hfill \cr} \right.\).

Thay x, y, z vào phương trình của mp(P) ta được:
\(2\left( {1 + t} \right) + 3 + 2t - 5 = 0 \Leftrightarrow t = 0\).
Vậy giao điểm của \(\Delta \) và mp(P) là A(1; 2; 3).

b) Gọi d là đường thẳng đi qua A nằm trong (P) và vuông góc với \(\Delta \). Vectơ chỉ phương \(\overrightarrow {u'} \) của d phải vuông góc với chỉ phương \(\overrightarrow u = \left( {1;2;2} \right)\) của \(\Delta \) đồng thời vuông góc với cả vectơ pháp tuyến \(\overrightarrow n = \left( {2;0;1} \right)\) của (P) nên ta chọn \(\overrightarrow {u'} = \left[ {\overrightarrow u ,\overrightarrow n } \right] = \left( {2;3; - 4} \right)\).
Vậy d có phương trình tham số là

\(\left\{ \matrix{
x = 1 + 2t \hfill \cr
y = 2 + 3t \hfill \cr
z = 3 - 4t \hfill \cr} \right.\)

Bài 34 trang 104 SGK Hình học 12 Nâng cao

a) Tính khoảng cách từ điểm M(2; 3; 1) đến đường thẳng \(\Delta \) có phương trình \({{x + 2} \over 1} = {{y - 1} \over 2} = {{z + 1} \over { - 2}}\).
b) Tính khoảng cách từ điểm \(N\left( {2;3; - 1} \right)\) đến đường thẳng \(\Delta \) đi qua điểm \({M_0}\left( { - {1 \over 2};0; - {3 \over 4}} \right)\) và có vectơ chỉ phương \(\overrightarrow u = \left( { - 4;2; - 1} \right)\).

Giải

a) Đường thẳng \(\Delta \) đi qua \({M_0}\left( { - 2;1; - 1} \right)\) và có vectơ chỉ phương \(\overrightarrow u = \left( {1;2; - 2} \right)\)
Ta có \(\overrightarrow {{M_0}M} = \left( {4;2;2} \right)\,;\,\,\left[ {\overrightarrow u ;\overrightarrow {{M_0}M} } \right] = \left( {8; - 10; - 6} \right)\).
Vậy khoảng cách cần tìm là \(d = {{\left| {\left[ {\overrightarrow u ;\overrightarrow {{M_0}M} } \right]} \right|} \over {\left| {\overrightarrow u } \right|}} = {{\sqrt {{8^2} + {{(-10)}^2} + {(-6)^2}} } \over {\sqrt {{1^2} + {2^2} + {(-2)^2}} }} = {{10\sqrt 2 } \over 3}\).
b) Ta có \(\overrightarrow {{M_0}N} = \left( {{5 \over 2};3; - {1 \over 4}} \right)\,\,;\,\,\left[ {\overrightarrow u ;\overrightarrow {{M_0}N} } \right] = \left( {{5 \over 2}; - {7 \over 2};17} \right)\).
Vậy khoảng cách cần tìm là:

\(d = {{\left| {\left[ {\overrightarrow u ;\overrightarrow {{M_0}N} } \right]} \right|} \over {\left| {\overrightarrow u } \right|}} = {{\sqrt {{{\left( {{5 \over 2}} \right)}^2} + {{\left( {{-7 \over 2}} \right)}^2} + {{17}^2}} } \over {\sqrt {{4^2} + {2^2} + {1^2}} }} = {{\sqrt {2870} } \over {14}}\)

Bài 35 SGK trang 104 Hình học 12 Nâng cao

Tìm khoảng cách giữa hai đường thẳng sau:

a)

\(d:\left\{ \matrix{
x = 1 + t \hfill \cr
y = - 1 - t \hfill \cr
z = 1 \hfill \cr} \right.\) và

\(d':\left\{ \matrix{
x = {2 - 3t'} \hfill \cr
y ={ - 2 + 3t'} \hfill \cr
z = 3 \hfill \cr} \right.\)

b)

\(d:\,{x \over { - 1}} = {{y - 4} \over 1} = {{z + 1} \over { - 2}}\) và

\(d':\left\{ \matrix{
x ={ - t'} \hfill \cr
y = {2 + 3t'} \hfill \cr
z = {- 4 + 3t'} \hfill \cr} \right.\)

Giải

a) Đường thẳng d đi qua \({M_1}\left( {1; - 1;1} \right)\) có vectơ chỉ phương \(\overrightarrow {{u_1}} = \left( {1; - 1;0} \right)\).
Đường thẳng d’ đi qua điểm \({M_2}\left( {2; - 2;3} \right)\), có vectơ chỉ phương \(\overrightarrow {{u_2}} \left( { - 1;1;0} \right)\). Vì \(\overrightarrow {{u_1}} \) và \(\overrightarrow {{u_2}} \) cùng phương nhưng \(\overrightarrow {{u_1}} \); \(\overrightarrow {{u_2}} \) không cùng phương với \(\overrightarrow {{M_1}{M_2}} = \left( {1; - 1;2} \right)\) nên hai đường thẳng đó song song.
Vậy khoảng cách giữa hai đường thẳng đó bằng khoảng cách từ \({M_1}\) tới d’ và bằng \({{\left| {\left[ {\overrightarrow {{M_1}{M_2}} ;\overrightarrow {{u_2}} } \right]} \right|} \over {\left| {\overrightarrow {{u_2}} } \right|}} = 2\)

b) Đường thẳng d đi qua \(M\left( {0;4; - 1} \right)\) và có vectơ chỉ phương \(\overrightarrow u = \left( { - 1;1; - 2} \right)\).
Đường thẳng d’ đi qua \(M'\left( {0;2; - 4} \right)\) và có vectơ chỉ phương \(\overrightarrow {u'} = \left( { - 1;3;3} \right)\).
Ta có \(\overrightarrow {MM'} = \left( {0; - 2; - 3} \right)\,\,;\,\,\left[ {\overrightarrow u ;\overrightarrow {u'} } \right] = \left( {9;5; - 2} \right)\).
\( \Rightarrow \left[ {\overrightarrow u ,\overrightarrow {u'} } \right].\overrightarrow {MM'} = - 4 \ne 0 \Rightarrow d\) và d’ chéo nhau.
Khoảng cách giữa \({d_1}\) và \({d_2}\) là:

\(d = {{\left| {\left[ {\overrightarrow u ,\overrightarrow {u'} } \right].\overrightarrow {MM'} } \right|} \over {\left| {\left[ {\overrightarrow u ,\overrightarrow {u'} } \right]} \right|}} = {4 \over {\sqrt {{9^2} + {5^2} + {2^2}} }} = {{2\sqrt {110} } \over {55}}\)

                                                                                           congdong.edu.vn


Giáo trình
Thể loại: Lớp 12
Số bài: 120

Bạn cần hỗ trợ? Nhấc máy lên và gọi ngay cho chúng tôi -hotline@tnn.vn
hoặc

  Hỗ trợ trực tuyến

Giao hàng toàn quốc

Bảo mật thanh toán

Đổi trả trong 7 ngày

Tư vẫn miễn phí