Danh mục menu
Lớp 12 - Toán học - Nâng cao Bài 12, 13, 14 trang 82 SGK Hình học 12 Nâng cao

Bài 12 trang 82 SGK Hình học 12 Nâng cao

Cho hình chóp S.ABC có đường cao SA = h, đáy là tam giác ABC vuông tại C, AC = b, BC = a. Gọi M là trung điểm của AC và N là điểm sao cho \(\overrightarrow {SN} = {1 \over 3}\overrightarrow {SB} \).

a) Tính độ dài đoạn thẳng MN.

b) Tìm sự liên hệ giữa a, b, h để MN vuông góc với SB.

Giải

 

Chọn hệ trục Oxyz như hình vẽ, B nằm trong góc xOy.
Ta có: \(A = \left( {0;0;0} \right),C = \left( {b;0;0} \right),B = \left( {b;a;0} \right),\)

\(S = \left( {0;0;h} \right)\) .

\(M\left( {{b \over 2};0;0} \right),\overrightarrow {SB} = \left( {b;a; - h} \right)\)

Gọi \(N\left( {x;y;z} \right)\) thì \(\overrightarrow {SN} = \left( {x;y;z - h} \right)\).

\(\overrightarrow {SN} = {1 \over 3}\overrightarrow {SB} \Leftrightarrow \left\{ \matrix{
x = {b \over 3} \hfill \cr
y = {a \over 3} \hfill \cr
z - h = {{ - h} \over 3} \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x = {b \over 3} \hfill \cr
y = {a \over 3} \hfill \cr
z = {{2h} \over 3} \hfill \cr} \right.\)

\(\Rightarrow N\left( {{b \over 3};{a \over 3};{{2h} \over 3}} \right)\)

a)

\(\eqalign{
& \overrightarrow {MN} = \left( {{b \over 3} - {b \over 2};{a \over 3};{{2h} \over 3}} \right) = \left( { - {b \over 6};{a \over 3};{{2h} \over 3}} \right) \cr
& MN = \sqrt {{{{b^2}} \over {36}} + {{{a^2}} \over 9} + {{4{h^2}} \over 9}} \cr&= {1 \over 6}\sqrt {{b^2} + 4{a^2} + 16{h^2}} \cr} \)

b) \(MN \bot SB \Leftrightarrow \overrightarrow {MN} .\overrightarrow {SB} = 0 \)

\(\Leftrightarrow - {{{b^2}} \over 6} + {{{a^2}} \over 3} + {{ - 2{h^2}} \over 3} = 0 \Leftrightarrow 4{h^2} = 2{a^2} - {b^2}\)

Bài 13 trang 82 SGK Hình học 12 Nâng cao

Tìm toạ độ tâm và tính bán kính của mỗi mặt cầu sau đây :

a) \({x^2} + {y^2} + {z^2} - 8x + 2y + 1 = 0\)

b) \(3{x^2} + 3{y^2} + 3{z^2} + 6x - 3y + 15z - 2 = 0\)

c) \(9{x^2} + 9{y^2} + 9{z^2} - 6x + 18y + 1 = 0\)

Giải

a) Ta có

\(\eqalign{
& {x^2} + {y^2} + {z^2} - 8x + 2y + 1 = 0 \cr
& \Leftrightarrow \left( {{x^2} - 8x + 16} \right) + \left( {{y^2} + 2y + 1} \right) + {z^2} = 16 \cr
& \Leftrightarrow {\left( {x - 4} \right)^2} + {\left( {y + 1} \right)^2} + {z^2} = 16 \cr} \)

Mặt cầu có tâm \(I\left( {4; - 1;0} \right)\) và có bán kính R = 4.

b) Ta có

\(\eqalign{
& 3{x^2} + 3{y^2} + 3{z^2} + 6x - 3y + 15z - 2 = 0 \cr
& \Leftrightarrow {x^2} + {y^2} + {z^2} + 2x - y + 5z - {2 \over 3} = 0 \cr
& \Leftrightarrow {\left( {x + 1} \right)^2} + {\left( {y - {1 \over 2}} \right)^2} + {\left( {z + {5 \over 2}} \right)^2} = {{49} \over 6} \cr} \)

Mặt cầu có tâm \(I\left( { - 1;{1 \over 2}; - {5 \over 2}} \right)\) và có bán kính \(R = {{7\sqrt 6 } \over 6}\).

c)

\(\eqalign{
& 9{x^2} + 9{y^2} + 9{z^2} - 6x + 18y + 1 = 0 \cr
& \Leftrightarrow {x^2} + {y^2} + {z^2} - {2 \over 3}x + 2y + {1 \over 9} = 0 \cr
& \Leftrightarrow {\left( {x - {1 \over 3}} \right)^2} + {\left( {y + 1} \right)^2} + {z^2} = 1 \cr} \)

Mặt cầu có tâm \(I\left( {{1 \over 3}; - 1;0} \right)\) và có bán kính R = 1.

Bài 14 trang 82 SGK Hình học 12 Nâng cao

Trong mỗi trường hợp sau, hãy viết phương trình mặt cầu :

a) Đi qua ba điểm A(0 ; 8 ; 0), B(4; 6 ; 2), C(0 ; 12 ; 4) và có tâm nằm trên mp(Oyz);

b) Có bán kính bằng 2, tiếp xúc với mặt phẳng (Oyz) và có tâm nằm trên tia Ox;

c) Có tâm I(1 ; 2 ; 3) và tiếp xúc với mp(Oyz).

Giải

a) Tâm I của mặt cầu nằm trên mp(Oyz) nên \(I\left( {0;b;c} \right)\). Ta tìm b và c để IA = IB = IC. Ta có:

\(\left\{ \matrix{
I{A^2} = I{B^2} \hfill \cr
I{A^2} = I{C^2} \hfill \cr} \right. \)

\(\Leftrightarrow \left\{ \matrix{
{\left( {8 - b} \right)^2} + {c^2} = {4^2} + {\left( {6 - b} \right)^2} + {\left( {2 - c} \right)^2} \hfill \cr
{\left( {8 - b} \right)^2} + {c^2} = {\left( {12 - b} \right)^2} + {\left( {4 - c} \right)^2} \hfill \cr} \right. \)

\(\Leftrightarrow \left\{ \matrix{
b = 7 \hfill \cr
c = 5 \hfill \cr} \right.\)

Vậy tâm \(I\left( {0;7;5} \right)\) bán kính

R = IA =\(\sqrt {0 + 1 + 25} = \sqrt {26} \).

Mặt cầu có phương trình \({x^2} + {\left( {y - 7} \right)^2} + {\left( {z - 5} \right)^2} = 26\).

b) Vì tâm của mặt cầu nằm trên tia Ox và mặt cầu tiếp xúc với mp(Oyz) nên điểm tiếp xúc phải là O, do đó bán kính mặt cầu là R = IO = 2 và \(I\left( {2;0;0} \right)\).

Mặt cầu có phương trình \({\left( {x - 2} \right)^2} + {y^2} + {z^2} = 4\)

c) Vì mặt cầu có tâm \(I\left( {1;2;3} \right)\) và tiếp xúc với mp(Oyz), vậy R = 1. Mặt cầu có phương trình \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 1\)

                                                                                              congdong.edu.vn


Giáo trình
Thể loại: Lớp 12
Số bài: 120

Bạn cần hỗ trợ? Nhấc máy lên và gọi ngay cho chúng tôi -hotline@tnn.vn
hoặc

  Hỗ trợ trực tuyến

Giao hàng toàn quốc

Bảo mật thanh toán

Đổi trả trong 7 ngày

Tư vẫn miễn phí