Danh mục menu
Toán học Giải bài 4, 5, 6 trang 134 SGK Giải tích 12

Bài 4 trang 134 sgk giải tích 12

 

Tính \(|z|\) với:

a) \(z = -2 + i\sqrt3\); b) \(z = \sqrt2 - 3i\);

c) \(z = -5\); d) \(z = i\sqrt3\).

Giải

a) \(|z| = \sqrt{(-2)^{2}+(\sqrt{3})^{2}}=\sqrt{7}\);

b) \(|z| =\sqrt{(\sqrt{2})^{2}+(-3)^{2}} = \sqrt11\);

c) \(|z| = \sqrt{(-5)^{2}} = 5 \);

d) \(|z| = \sqrt{(\sqrt{3})^{2}}= \sqrt3\).


Bài 5 trang 134 sgk giải tích 12

Trên mặt phẳng toạ độ, tìm tập hợp điểm biểu diễn các số phức \(z\) thoả mãn điều kiện:

a) \(|z| = 1\); b) \(|z| ≤ 1\);

c) \(1 < |z| ≤ 2\); d) \(|z| = 1\) và phần ảo của \(z\) bằng \(1\).

Giải

Giả sử \(z = x + yi, (x,y \in \mathbb R)\), khi đó trên mặt phẳng toạ độ \(Oxy\), điểm \(M(x;y)\) biểu diễn số phức \(z\).

a) Ta có \(|z| = 1 ⇔ \sqrt {{x^2} + {y^2}} = 1 ⇔ {x^2} + {y^2} = 1\).

Vậy tập hợp điểm biểu diễn số phức \(z\) là đường tròn tâm \(O\), bán kính bằng \(1\)

b) Ta có \(|z| ≤ 1 ⇔ \sqrt {{x^2} + {y^2}} ≤ 1 ⇔ {x^2} + {y^2}≤ 1\).

Vậy tập hợp điểm biểu diễn số phức \(z\) là hình tròn tâm \(O\), bán kính bằng \(1\) (kể cả các điểm trên đường tròn)

c) Ta có \(1 < |z| ≤ 2 ⇔ 1 < \sqrt {{x^2} + {y^2}} ≤ 2 ⇔ 1 < {x^2} + {y^2}≤ 4\).

Vậy tập hợp điểm biểu diễn số phức z là phần nằm giữa đường tròn tâm \(O\), bán kính bằng \(1\) (không kể điểm trên đường tròn này) và đường tròn tâm \(O\), bán kính bằng \(2\) (kể cả các điểm trên đường tròn này)

d) Ta có \(|z| = 1 ⇔ \sqrt {{x^2} + {y^2}} = 1 ⇔ {x^2} + {y^2}= 1\) và phần ảo của \(z\) bằng \(1\) tức \(y = 1\). Suy ra \(x = 0\) và \(y = 1\)

Vậy tập hợp các điểm cần tìm là điểm \(A(0;1)\).


Bài 6 trang 134 sgk giải tích 12

Tìm \(\overline z\), biết:

a) \(z = 1 - i\sqrt2\); b) \(z = -\sqrt2 + i\sqrt3\).

c) \(z = 5\); d) \(z = 7i\).

Giải

a) \(\overline z= 1 + i\sqrt 2\); b) \(\overline z = -\sqrt2 - i\sqrt3\);

c) \(\overline z= 5\); d) \(\overline z= -7i\).

 

 

Giáo trình
Thể loại: Lớp 12
Số bài: 83

Bạn cần hỗ trợ? Nhấc máy lên và gọi ngay cho chúng tôi -hotline@tnn.vn
hoặc

  Hỗ trợ trực tuyến

Giao hàng toàn quốc

Bảo mật thanh toán

Đổi trả trong 7 ngày

Tư vẫn miễn phí