Bài 9 trang 147 SGK Giải tích 12
Giải các phương trình sau:
a) \({13^{2x + 1}} - {13^x} - 12 = 0\)
b) \(({3^x} + {\rm{ }}{2^x})({3^x} + {\rm{ }}{3.2^x}){\rm{ }} = {\rm{ }}{8.6^x}\)
c) \({\log _{\sqrt 3 }}(x - 2).{\log _5}x = 2{\log _3}(x - 2)\)
d) \(log_2^2x{\rm{ }}-{\rm{ }}5log_2x{\rm{ }} + {\rm{ }}6{\rm{ }} = {\rm{ }}0\)
Giải
a) Đặt \(t = 13^x > 0\) ta được phương trình:
\(13t^2 – t – 12 = 0 ⇔ (t – 1)(13t + 12) = 0\)
\(⇔ t = 1 ⇔ 13^x = 1 ⇔ x = 0\)
b)
Chia cả hai vế phương trình cho \(9^x\) ta được phương trình tương đương
\((1 + {({2 \over 3})^x})(1 + 3.{({2 \over 3})^x}) = 8.{({2 \over 3})^x}\)
Đặt \(t = {({2 \over 3})^x} (t > 0)\) , ta được phương trình:
\((1 + t)(1 + 3t) = 8t ⇔ 3t^2– 4t + 1 = 0 ⇔ \)\(t \in \left\{ {{1 \over 3},1} \right\}\)
Với \(t = {1 \over 3}\) ta được nghiệm \(x = {\log _{{2 \over 3}}}{1 \over 3}\)
Với \(t = 1\) ta được nghiệm \(x = 0\)
c) Điều kiện: \(x > 2\)
\(\eqalign{
& \Leftrightarrow 2lo{g_3}(x - 2).lo{g_5}x = 2lo{g_3}(x - 2) \cr
& \Leftrightarrow 2lo{g_3}(x - 2)({\log _5}x - 1) = 0 \cr} \)
\(\Leftrightarrow\left[ \matrix{{\log _3}(x - 2) = 0 \hfill \cr lo{g_5}x = 1 \hfill \cr} \right. \Leftrightarrow \left[ \matrix{x = 3 \hfill \cr x = 5 \hfill \cr} \right.\)
d) Điều kiện: \(x > 0\)
\(\eqalign{
& \log _2^2x - 5{\log _2}x + 6 = 0 \cr
& \Leftrightarrow ({\log _2}x - 2)({\log _2}x - 3) = 0 \cr
& \Leftrightarrow \left[ \matrix{
{\log _2}x = 2 \hfill \cr
{\log _2}x = 3 \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
x = 4 \hfill \cr
x = 8 \hfill \cr} \right. \cr} \)
Bài 10 trang 147 SGK Giải tích 12
Giải các bất phương trình sau
a) \({{{2^x}} \over {{3^x} - {2^x}}} \le 2\)
b) \({({1 \over 2})^{{{\log }_2}({x^2} - 1)}} > 1\)
c) \({\log ^2}x + 3\log x \ge 4\)
d) \({{1 - {{\log }_4}x} \over {1 + {{\log }_2}x}} \le {1 \over 4}\)
Trả lời:
a) Ta có:
\({{{2^x}} \over {{3^x} - {2^x}}} \le 2 \Leftrightarrow {1 \over {{{({3 \over 2})}^x} - 1}} \le 2\)
Đặt \(t = {({3 \over 2})^2}(t > 0)\) , bất phương trình trở thành:
\(\eqalign{
& {1 \over {t - 1}} \le 2 \Leftrightarrow {1 \over {t - 1}} - 2 \le 0 \Leftrightarrow {{ - 2t + 3} \over {t - 1}} \le 0 \cr
& \Leftrightarrow \left[ \matrix{
0 < t < 1 \hfill \cr
t \ge {3 \over 2} \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
{({3 \over 2})^x} < 1 \hfill \cr
{({3 \over 2})^2} \ge {3 \over 2} \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
x < 0 \hfill \cr
x \ge 1 \hfill \cr} \right. \cr} \)
b) Ta có:
\(\eqalign{
& {({1 \over 2})^{{{\log }_2}({x^2} - 1)}} > 1 \Leftrightarrow \left\{ \matrix{
{x^2} - 1 > 0 \hfill \cr
{\log _2}({x^2} - 1) < 0 \hfill \cr} \right. \cr
& \Leftrightarrow 0 < {x^2} - 1 < 1 \Leftrightarrow 1 < |x| < \sqrt 2 \cr
& \Leftrightarrow x \in ( - \sqrt 2 , - 1) \cup (1,\sqrt 2 ) \cr} \)
c) Điều kiện: \(x > 0\)
\(\eqalign{
& {\log ^2}x + 3\log x \ge 4 \Leftrightarrow (\log x + 4)(logx - 1) \ge 0 \cr
& \Leftrightarrow \left[ \matrix{
{\mathop{\rm logx}\nolimits} \ge 1 \hfill \cr
logx \le - 4 \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
x \ge 10 \hfill \cr
0 < x \le {10^{ - 4}} \hfill \cr} \right. \cr} \)
d) Ta có:
\(\eqalign{
& {{1 - {{\log }_4}x} \over {1 + {{\log }_2}x}} \le {1 \over 4} \Leftrightarrow {{1 - {{\log }_4}x} \over {1 + 2{{\log }_4}x}} \le {1 \over 4} \cr
& \Leftrightarrow {{3 - 6{{\log }_4}x} \over {1 + 2{{\log }_4}x}}\le0 \cr
& \Leftrightarrow \left[ \matrix{
{\log _4}x \le {{ - 1} \over 2} \hfill \cr
{\log _4}x \ge {1 \over 2} \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
0 < x < {1 \over 2} \hfill \cr
x \ge 2 \hfill \cr} \right. \cr} \)
Bài 11 trang 147 SGK Giải tích 12
Tính các tích phân sau bằng phương pháp tính tích phân từng phần
a) \(\int_1^{{e^4}} {\sqrt x } \ln xdx\)
b) \(\int_{{\pi \over 6}}^{{\pi \over 2}} {{{xdx} \over {{{\sin }^2}x}}} \)
c) \(\int_0^\pi {(\pi - x)\sin {\rm{x}}dx} \)
d) \(\int_{ - 1}^0 {(2x + 3){e^{ - x}}} dx\)
Giải
a)
\(\eqalign{
& \int_1^{{e^4}} {\sqrt x } \ln xdx = {\int_1^{{e^4}} {\ln xd({2 \over 3}} x^{{3 \over 2}}}) \cr
& = {2 \over 3}{x^{{3 \over 2}}}\ln x\left| {_1^{{e^4}}} \right. - \int\limits_1^{{e^4}} {{2 \over 3}} .{x^{{3 \over 2}}}.d{\mathop{\rm lnx}\nolimits} \cr
& = {8 \over 3}{e^6} - {2 \over 3}{x^{{1 \over 2}}}dx = {8 \over 3}{e^6} - {4 \over 9}{x^{{2 \over 3}}}\left| {_1^{{e^4}}} \right. = {{20} \over 9}{e^6} + {4 \over 9} \cr} \)
b) Ta có:
\(\eqalign{
& \int_{{\pi \over 6}}^{{\pi \over 2}} {{{xdx} \over {{{\sin }^2}x}}} = \int\limits_{{\pi \over 6}}^{{\pi \over 2}} {xd( - \cot x) = - x\cot x\left| {_{{\pi \over 6}}^{{\pi \over 2}}} \right.} + \int\limits_{{\pi \over 6}}^{{\pi \over 2}} {\cot xdx} \cr
& = {{\pi \sqrt 3 } \over 6} + \int\limits_{{\pi \over 6}}^{{\pi \over 2}} {{{d\sin x} \over {{\mathop{\rm s}\nolimits} {\rm{inx}}}}} = {{\pi \sqrt 3 } \over 6} + \ln |sinx|\left| {_{{\pi \over 6}}^{{\pi \over 2}}} \right. = {{\pi \sqrt 3 } \over 6} + \ln 2 \cr} \)
c) Ta có:
\(\eqalign{
& \int_0^\pi {(\pi - x)\sin {\rm{x}}dx} = \int\limits_0^\pi {(\pi - x)d( - {\mathop{\rm cosx}\nolimits} )} \cr
& = - (\pi - x)cosx\left| {_0^\pi } \right. + \int\limits_0^\pi {{\mathop{\rm cosxd}\nolimits} (\pi - x) = \pi - s{\rm{inx}}\left| {_0^\pi } \right.} = \pi \cr} \)
d) Ta có:
\(\eqalign{
& \int_{ - 1}^0 {(2x + 3){e^{ - x}}} dx = \int\limits_{ - 1}^0 {(2x + 3)d( - {e^{ - x}}} ) \cr
& = (2x + 3){e^{ - x}}\left| {_0^{ - 1}} \right. + \int\limits_{ - 1}^e {{e^{ - x}}} .2dx = e - 3 + 2{e^{ - x}}\left| {_0^1} \right. = 3e - 5 \cr} \)
Bài 12 trang 147 SGK Giải tích 12
Tính các tích phân sau bằng phương pháp đổi biến số
a) \(\int\limits_0^{{\pi \over 24}} {\tan ({\pi \over 4} - 4x)dx} \) (đặt \(u = \cos ({\pi \over 3} - 4x)\) )
b) \(\int\limits_{{{\sqrt 3 } \over 5}}^{{3 \over 5}} {{{dx} \over {9 + 25{x^2}}}} \) (đặt \(x = {3 \over 5}\tan t\) )
c) \(\int\limits_0^{{\pi \over 2}} {{{\sin }^3}} x{\cos ^4}xdx\) (đặt u = cos x)
d) \(\int\limits_{{{ - \pi } \over 4}}^{{\pi \over 4}} {{{\sqrt {1 + \tan x} } \over {{{\cos }^2}x}}} dx\) (đặt \(u = \sqrt {1 + \tan x} \) )
Giải
a) Ta có:
Đặt \(u = \cos ({\pi \over 3} - 4x)\) thì \(u' = 4sin({\pi \over 3} - 4x)\)
Khi \(x = 0\) thì \(u = {1 \over 2}\) ; khi \(x = {\pi \over {24}} \Rightarrow u = {{\sqrt 3 } \over 2}\)
Khi đó:
\(\eqalign{
& \int\limits_0^{{\pi \over {24}}} {\tan ({\pi \over 3}} - 4x)dx = {1 \over 4}\int\limits_0^{{\pi \over {24}}} {{{d\cos ({\pi \over 3} - 4x)} \over {\cos ({\pi \over 3} - 4x)}}} \cr
& = {1 \over 4}\int\limits_{{1 \over 2}}^{{{\sqrt 3 } \over 2}} {{{du} \over u}} ={1 \over 4}\ln |u|\left| {_{{1 \over 2}}^{{{\sqrt 3 } \over 2}}} \right.= {1 \over 4}\ln \sqrt 3 \cr} \)
b)
Đặt
\(x = {3 \over 5}\tan t \Rightarrow \left\{ \matrix{
9 + 25{x^2} = 9(1 + {\tan ^2}t) \hfill \cr
dx = {3 \over 5}(1 + {\tan ^2}t) \hfill \cr} \right.\)
Đổi cận: \(x = {{\sqrt 3 } \over 5} \Rightarrow t = {\pi \over 6};x = {3 \over 5} \Rightarrow t = {\pi \over 4}\)
Do đó:
\(\int\limits_{{{\sqrt 3 } \over 5}}^{{3 \over 5}} {{{dx} \over {9 + 25{x^2}}}} = \int\limits_{{\pi \over 6}}^{{\pi \over 4}} {{1 \over {15}}dt ={1 \over {15}}t\left| {_{{\pi \over 6}}^{{\pi \over 4}}} \right. {\pi \over {180}}} \)
c) Đặt \(t = cos x\) thì \(dt = -sin x dx\)
Khi \(x = 0 \Rightarrow t = 1;x = {\pi \over 2} \Rightarrow t = 0\)
Do đó:
\(\eqalign{
& \int\limits_0^{{\pi \over 2}} {{{\sin }^3}x{{\cos }^4}xdx = \int\limits_1^0 { - (1 - {t^2}){t^4}} dt} \cr
& = - \int\limits_0^1 {({t^4} - {t^6})dt = - ({{{t^5}} \over 5}} - {{{t^7}} \over 7})\left| {_0^1} \right. = {2 \over {35}} \cr} \)
d) Đặt \(u = \sqrt {1 + \tan x} \Rightarrow {t^2} = 1 + \tan x \Rightarrow 2tdt = {{dx} \over {{{\cos }^2}x}}\)
Do đó:
\(\int\limits_{{{ - \pi } \over 4}}^{{\pi \over 4}} {{{\sqrt {1 + \tan x} } \over {{{\cos }^2}x}}} dx = \int\limits_0^{\sqrt 2 } {2{t^2}dt = {2 \over 3}} {t^3}\left| {_0^{\sqrt 2 }} \right. = {{4\sqrt 2 } \over 3}\)