Danh mục menu
Toán học Giải bài 1, 2, 3 trang 25 SGK Hình học 12

Bài 1 trang 25 sgk hình học 12

 

Tính thể tích khối tứ diện đều cạnh \(a\).

Giải:

Cho tứ diện đều \(ABCD\). Hạ đường cao \(AH\) của tứ diện thì do các đường xiên \(AB, AC, AD\) bằng nhau nên các hình chiếu của chúng: \(HB, HC, HD\) bằng nhau. Do \(BCD\) là tam giác đều nên \(H\) là trọng tâm của tam giác \(BCD\).

Do đó \(BH = {2 \over 3}.{{\sqrt 3 } \over 2}a = {{\sqrt 3 } \over 3}a\)

Từ đó suy ra: \(AH^2 \)=\( a^2\)– \(BH^2 \)=\({{6{a^2}} \over 9}\)

Nên \(AH = {{\sqrt 6 } \over 3}a\)

Thể tích tứ diện đó \(V={1 \over 3} \cdot {1 \over 2} \cdot {{\sqrt 3 } \over 2}{a^2} \cdot {{\sqrt 6 } \over 3}a = {a^3}{{\sqrt 2 } \over {12}}.\)

Bài 2 trang 25 sgk hình học 12

Tính thể tích khối bát diện đều cạnh \(a\).

Giải:

Chia khối tám mặt đều cạnh \(a\) thành hai khối chóp tứ giác đều cạnh \(a\).

Gọi \(h\) là chiều cao của khối chóp thì dễ thấy

\({h^2} = {a^2} - {\left( {{a\sqrt {2}}\over2 } \right)^2} = {{{a^2}} \over 2}\) nên \(h = {{a\sqrt 2 } \over 2}\)

Từ đó thể tích khối tám mặt đều cạnh \(a\) là:

\(V = 2.{1 \over 3}.{{\sqrt {2}}\over2}a .{a^2} = {a^3}{{\sqrt 2 } \over 3}\).

Bài 3 trang 25 sgk hình học 12

Cho hình hộp \(ABCD.A’B’C’D’\). Tính thể tích của khối hộp đó và thể tích của khối tứ diện \(ACB’D’\).

Giải:

Gọi \(S\) là diện tích đáy \(ABCD\) và \(h\) là chiều cao của khối hộp. Chia khối hộp thành khối tứ diện \(ACB’D’\) và bốn khối chóp \(A.A’B’D’, C.C’B’D’, B’.BAC\) và \(D’. DAC\). Ta thấy bốn khối chóp sau đều có diện tích đáy bằng \(\frac{S}{2}\) và chiều cao bằng \(h\), nên tổng các thể tích của chúng bằng

\(4\cdot \frac{1}{3}\cdot \frac{S}{2}h\)\(=\frac{2}{3}Sh\).

Từ đó suy ra thể tích của khối tứ diện

\(ACB’D’\)=\(\frac{1}{3}Sh\). Do đó tỉ số của thể tích khối hộp đó và thể tích của khối tứ diện \(ACB’D’\) bằng \(3\).

 

 

Giáo trình
Thể loại: Lớp 12
Số bài: 83

Bạn cần hỗ trợ? Nhấc máy lên và gọi ngay cho chúng tôi -hotline@tnn.vn
hoặc

  Hỗ trợ trực tuyến

Giao hàng toàn quốc

Bảo mật thanh toán

Đổi trả trong 7 ngày

Tư vẫn miễn phí