Danh mục menu
Lớp 12 - Toán học Giải bài 13, 14, 15, 16 trang 148 SGK Giải tích 12

Bài 13 trang 148 SGK Giải tích 12

Tính diện tích hình phẳng giới hạn bởi các đường thẳng

a) \(y = x^2 + 1, x = -1, x = 2\) và trục hoành

b) \(y = ln x, x = {1 \over e}, x = e\) và trục hoành

Giải

a) Diện tích hình phẳng cần tìm là:

\(S = \int\limits_{ - 1}^2 {({x^2} + 1)dx = ({{{x^3}} \over 3}} + x)\left| {_{ - 1}^2} \right. = 6\)

b) Diện tích hình phẳng cần tìm là:

\(\eqalign{& S = \int\limits_{{1 \over e}}^e {|\ln x|dx = \int\limits_{{1 \over e}}^1 {|\ln x|dx + } } \int\limits_1^e {|\ln x|dx} \cr & = - \int\limits_{{1 \over e}}^1 {\ln xdx + \int\limits_1^e {\ln xdx} } \cr} \)

Mặt khác:

\(\int {\ln xdx = x\ln x - \int {xd\ln x = x\ln x - \int {dx = x\ln x - x + C} } } \)

Do đó:

\(\eqalign{
& S = - \int\limits_{{1 \over e}}^1 {\ln xdx + \int\limits_1^e {\ln xdx} } = \int\limits_1^{{1 \over e}} {\ln xdx + \int\limits_1^e {xdx} } \cr
& = (x\ln x - x)\left| {_1^{{1 \over e}}} \right. + (x\ln x - x)\left| {_1^e} \right. = 2(1 - {1 \over e}) \cr} \)


Bài 14 trang 148 SGK Giải tích 12

Tìm vật thể tròn xoay thu được khi quay hình phẳng giới hạn bởi các đường \(y = 2x^2\) và \(y = x^3\) xung quanh trục Ox

Giải

Hoành độ giao điểm hai đường thẳng là nghiệm của phương trình sau:

\(x^3 = 2x^2\)

\(\Leftrightarrow x = 0\) hoặc \(x = 2\)

Trong khoảng \((0, 2)\) ta có \(0 < x^3< 2x^2\) nên thể tích cần tìm là:

\(V = \pi \int\limits_0^2 {(4{x^4} - {x^6})dx = \pi ({{4{x^5}} \over 5}} - {{{x^7}} \over 7})\left| {_0^2} \right. = {{256\pi } \over {35}}\).


Bài 15 trang 148 sgk Giải tích 12

Giải các phương trình sau trên tập số phức

a) \((3 + 2i)z – (4 + 7i) = 2 – 5i\)

b) \((7 – 3i)z + (2 + 3i) = (5 – 4i)z\)

c) \(z^2 – 2z + 13 = 0\)

d) \(z^4 -z^2– 6 = 0\)

Giải

a) \((3 + 2i)z – (4 + 7i) = 2 – 5i\)

\(\eqalign{
& \Leftrightarrow (3 + 2i)z = 6 + 2i \cr
& \Leftrightarrow z = {{6 + 2i} \over {3 + 2i}} = {{22} \over {13}} - {6 \over {13}}i \cr} \)

b) \((7 – 3i)z + (2 + 3i) = (5 – 4i)z\)

\(\eqalign{
& \Leftrightarrow (7 - 3i - 5 + 4i)z = - 2 - 3i \cr
& \Leftrightarrow z = {{ - 2 - 3i} \over {2 + i}} = {{ - 7} \over 5} - {4 \over 5}i \cr} \)

c) \(z^2– 2z + 13 = 0\)

\(⇔ (z – 1)^2 = -12 ⇔ z = 1 ± 2 \sqrt3 i\)

d) \(z^4 – z^2– 6 = 0\)

\(⇔ (z^2 – 3)(z^2 + 2) = 0\)

\(\Leftrightarrow \left[ \matrix{
z = \pm \sqrt 3 \hfill \cr
z = \pm \sqrt 2 i \hfill \cr} \right.\)


Bài 16 trang 148 SGK Giải tích 12

Trên mặt phẳng tọa độ, hãy tìm tập hợp điểm biểu diễn số phức \(z\) thỏa mãn bất đẳng thức:

a) \(| z| < 2\)

b) \(|z – i| ≤ 1\)

c) \(|z – 1 – i| < 1\)

Giải

Đặt \(z = a + bi ( a, b ∈ \mathbb R)\). Ta có:

a) \(\left| z \right| < 2 \Leftrightarrow \sqrt {{a^2} + {b^2}} < 2 \Leftrightarrow {a^2} + {b^2} < 4\)

Tập hợp các điểm \(M(a; b)\) biểu diễn các số phức \(z\) nằm trong hình tròn tâm \(O\) (gốc tọa độ), bán kính \(2\) (không kể biên)

b)

\(\eqalign{
& \left| {z{\rm{ }}-i} \right|{\rm{ }} \le {\rm{ }}1 \Leftrightarrow |a + (b - 1)i| \le 1 \Leftrightarrow \sqrt {{a^2} + {{(b - 1)}^2}} \le 1 \cr
& \Leftrightarrow {a^2} + {(b - 1)^2} \le 1 \cr} \)

Tập hợp các điểm \(M (a; b)\) biểu diễn các số phức \(z\) nằm trong hình tròn tâm \(I(0, 1)\), bán kính \(1\) (kể cả biên)

c)

\(|z – 1 – i| < 1 ⇔ |(a – 1) + (b – 1)i| < 1 ⇔ (a – 1)^2+ (b – 1)^2 < 1\)

Tập hợp các điểm \(M(a; b)\) biểu diễn số phức \(z\) nằm trong hình tròn (không kể biên) tâm \(I (1, 1)\), bán kính \(1\).

 

 

Giáo trình
Thể loại: Lớp 12
Số bài: 83

Bạn cần hỗ trợ? Nhấc máy lên và gọi ngay cho chúng tôi -hotline@tnn.vn
hoặc

  Hỗ trợ trực tuyến

Giao hàng toàn quốc

Bảo mật thanh toán

Đổi trả trong 7 ngày

Tư vẫn miễn phí