Danh mục menu
Lớp 11 - SBT Toán học Giải bài 3.5, 3.6, 3.7, 3.8 trang 36 Sách bài tập Đại số và giải tích 11

Bài 3.5 trang 36 Sách bài tập (SBT) Đại số và giải tích 11

Giải các phương trình sau

a) \({\cos ^2}x + 2\sin x\cos x + 5{\sin ^2}x = 2\)

b) \(3{\cos ^2}x - 2\sin 2x + {\sin ^2}x = 1\)

c) \(4{\cos ^2}x - 3\sin x\cos x + 3{\sin ^2}x = 1\)

Giải

a) \({\cos ^2}x + 2\sin x\cos x + 5{\sin ^2}x = 2\)

Rõ ràng cosx = 0 không thỏa mãn phương trình. Với cosx ≠ 0, chia hai vế cho cos2x ta được:

\(\eqalign{
& 1 + 2\tan x + 5{\tan ^2}x = 2\left( {1 + {{\tan }^2}x} \right) \cr
& \Leftrightarrow 3{\tan ^2}x + 2\tan x - 1 = 0 \cr
& \Leftrightarrow \left[ \matrix{
\tan x = - 1 \hfill \cr
\tan x = {1 \over 3} \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
x = - {\pi \over 4} + k\pi ,k \in {\rm Z} \hfill \cr
x = \arctan {1 \over 3} + k\pi ,k \in {\rm Z} \hfill \cr} \right. \cr} \)

b) \(3{\cos ^2}x - 2\sin 2x + {\sin ^2}x = 1\)

Với cosx = 0 ta thấy hai vế đều bằng 1. Vậy phương trình có nghiệm \(x = {\pi \over 2} + k\pi ,k \in {\rm Z}\)

Trường hợp cosx ≠ 0, chia hai vế cho cos2x ta được:

\(\eqalign{
& 3 - 4\tan x + {\tan ^2}x = 1 + {\tan ^2}x \cr
& \Leftrightarrow 4\tan x = 2 \cr
& \Leftrightarrow \tan x = {1 \over 2} \cr
& \Leftrightarrow x = \arctan {1 \over 2} + k\pi ,k \in {\rm Z} \cr} \)

Vậy nghiệm của phương trình là \(x = {\pi \over 2} + k\pi ,k \in {\rm Z}\) và \(x = \arctan {1 \over 2} + k\pi ,k \in {\rm Z}\)

c) \(4{\cos ^2}x - 3\sin x\cos x + 3{\sin ^2}x = 1\)

Rõ ràng cosx ≠ 0, chia hai vế của phương trình cho cos2x ta được:

\(\eqalign{
& 4 - 3\tan x + 3{\tan ^2}x = 1 + {\tan ^2}x \cr
& \Leftrightarrow 2{\tan ^2}x - 3\tan x + 3 = 0 \cr} \)

Phương trình cuối vô nghiệm đối với tanx, do đó phương trình đã cho vô nghiệm

Bài 3.6 trang 36 Sách bài tập (SBT) Đại số và giải tích 11

Giải các phương trình sau

a) \(2\cos x - \sin x = 2\)

b) \(\sin 5x + \cos 5x = - 1\)

c) \(8{\cos ^4}x - 4\cos 2x + \sin 4x - 4 = 0\)

d) \({\sin ^6}x + {\cos ^6}x + {1 \over 2}\sin 4x = 0\)

Giải

a)

\(\eqalign{
& 2\cos x - \sin x = 2 \cr
& \Leftrightarrow \sqrt 5 \left( {{2 \over {\sqrt 5 }}\cos x - {1 \over {\sqrt 5 }}\sin x} \right) = 2 \cr} \)

Kí hiệu α là góc mà \(\cos \alpha = {2 \over {\sqrt 5 }}\) và \({\rm{sin}}\alpha = - {1 \over {\sqrt 5 }}\), ta được phương trình

\(\eqalign{
& \cos \alpha \cos x + \sin \alpha \sin x = {2 \over {\sqrt 5 }} \cr
& \Leftrightarrow \cos \left( {x - \alpha } \right) = \cos \alpha \cr
& \Leftrightarrow x - \alpha = \pm \alpha + k2\pi ,k \in {\rm Z} \cr
& \Leftrightarrow \left[ \matrix{
x = 2\alpha + k2\pi ,k \in Z \hfill \cr
x = k2\pi ,k \in Z \hfill \cr} \right. \cr} \)

b)

\(\eqalign{
& \sin 5x + \cos 5x = - 1 \cr
& \Leftrightarrow \sqrt 2 \left( {{{\sqrt 2 } \over 2}\sin 5x + {{\sqrt 2 } \over 2}\cos 5x} \right) = - 1 \cr
& \Leftrightarrow \cos {\pi \over 4}\sin 5x + \sin {\pi \over 4}\cos 5x = - {{\sqrt 2 } \over 2} \cr
& \Leftrightarrow \sin \left( {5x + {\pi \over 4}} \right) = \sin \left( { - {\pi \over 4}} \right) \cr
& \Leftrightarrow \left[ \matrix{
5x + {\pi \over 4} = - {\pi \over 4} + k2\pi ,k \in Z \hfill \cr
5x + {\pi \over 4} = {{5\pi } \over 4} + k2\pi ,k \in Z \hfill \cr} \right. \cr
& \Leftrightarrow \left[ \matrix{
x = - {\pi \over {10}} + k{{2\pi } \over 5},k \in Z \hfill \cr
x = {\pi \over 5} + k{{2\pi } \over 5},k \in Z \hfill \cr} \right. \cr} \)

c)

\(\eqalign{
& 8{\cos ^4}x - 4\cos 2x + \sin 4x - 4 = 0 \cr
& \Leftrightarrow 8{\left( {{{1 + \cos 2x} \over 2}} \right)^2} - 4\cos 2x + \sin 4x - 4 = 0 \cr
& \Leftrightarrow 2\left( {1 + 2\cos 2x + {{\cos }^2}2x} \right) - 4\cos 2x + \sin 4x - 4 = 0 \cr
& \Leftrightarrow 2{\cos ^2}2x + \sin 4x - 2 = 0 \cr
& \Leftrightarrow 1 + \cos 4x + \sin 4x - 2 = 0 \cr
& \Leftrightarrow \cos 4x + \sin 4x = 1 \cr
& \Leftrightarrow \sin \left( {4x + {\pi \over 4}} \right) = \sin {\pi \over 4} \cr
& \Leftrightarrow \left[ \matrix{
4x + {\pi \over 4} = {\pi \over 4} + k2\pi ,k \in Z \hfill \cr
4x + {\pi \over 4} = {{3\pi } \over 4} + k2\pi ,k \in Z \hfill \cr} \right. \cr
& \Leftrightarrow \left[ \matrix{
x = k{\pi \over 2},k \in Z \hfill \cr
x = {\pi \over 8} + k{\pi \over 2},k \in Z \hfill \cr} \right. \cr} \)

d)

\(\eqalign{
& {\sin ^6}x + {\cos ^6}x + {1 \over 2}\sin 4x = 0 \cr
& \Leftrightarrow {\left( {{{\sin }^2}x + {{\cos }^2}x} \right)^3} - 3{\sin ^2}x{\cos ^2}x\left( {{{\sin }^2}x + {{\cos }^2}x} \right) + {1 \over 2}\sin 4x = 0 \cr
& \Leftrightarrow 1 - 3{\sin ^2}x{\cos ^2}x + {1 \over 2}\sin 4x = 0 \cr
& \Leftrightarrow 1 - 3{\left( {{{\sin 2x} \over 2}} \right)^2} + {1 \over 2}\sin 4x = 0 \cr
& \Leftrightarrow 1 - {3 \over 4}{\sin ^2}2x + {1 \over 2}\sin 4x = 0 \cr
& \Leftrightarrow 1 - {3 \over 4}.{{1 - \cos 4x} \over 2} + {1 \over 2}\sin 4x = 0 \cr
& \Leftrightarrow 8 - 3 + 3\cos 4x + 4\sin 4x = 0 \cr
& \Leftrightarrow 3\cos 4x + 4\sin 4x = - 5 \cr
& \Leftrightarrow {3 \over 5}\cos 4x + {4 \over 5}\sin 4x = - 1 \cr} \)

Kí hiệu α là cung mà \(\sin \alpha = {3 \over 5},\cos \alpha = {4 \over 5}\) ta được:

\(\eqalign{
& \Leftrightarrow \sin \left( {4x + \alpha } \right) = - 1 \cr
& \Leftrightarrow 4x + \alpha = {{3\pi } \over 2},k \in Z \cr
& \Leftrightarrow x = {{3\pi } \over 8} - {\alpha \over 4} + k{\pi \over 2},k \in Z \cr} \)

Bài 3.7 trang 36 Sách bài tập (SBT) Đại số và giải tích 11

Giải các phương trình sau:

a) \(1 + \sin x - \cos x - \sin 2x + 2\cos 2x = 0\)

b) \(\sin x - {1 \over {\sin x}} = {\sin ^2}x - {1 \over {{{\sin }^2}x}}\)

c) \(\cos x\tan 3x = \sin 5x\)

d) \(2{\tan ^2}x + 3\tan x + 2{\cot ^2}x + 3\cot x + 2 = 0\)

Giải:

a) \(1 + \sin x - \cos x - \sin 2x + 2\cos 2x = 0{\rm{ }}\left( 1 \right)\)

Ta có:

\(\eqalign{
& 1 - \sin 2x = {\left( {\sin x - \cos x} \right)^2}; \cr
& 2\cos 2x = 2\left( {{{\cos }^2}x - {{\sin }^2}x} \right) \cr
& = - 2\left( {\sin x - \cos x} \right)\left( {\sin x + \cos x} \right), \cr} \)

Vậy

\(\eqalign{
& \left( 1 \right) \Leftrightarrow \left( {\sin x - \cos x} \right)\left( {1 + \sin x - \cos x - 2\sin x - 2\cos x} \right) = 0 \cr
& \Leftrightarrow \left( {\sin x - \cos x} \right)\left( {1 - \sin x - 3\cos x} \right) = 0 \cr
& \Leftrightarrow \left[ \matrix{
\sin x = \cos x \hfill \cr
3\cos x + \sin x = 1 \hfill \cr} \right. \cr
& \Leftrightarrow \left[ \matrix{
\tan x = 1 \hfill \cr
{3 \over {\sqrt {10} }}\cos x + {1 \over {\sqrt {10} }}\sin x = {1 \over {\sqrt {10} }} \hfill \cr} \right. \cr
& \Leftrightarrow \left[ \matrix{
x = {\pi \over 4} + k\pi ,k \in Z \hfill \cr
x = \alpha \pm \arccos {1 \over {\sqrt {10} }} + k2\pi ,k \in Z \hfill \cr} \right. \cr} \)

trong đó, \(\cos \alpha = {3 \over {\sqrt {10} }},\sin \alpha = {1 \over {\sqrt {10} }}\)

b) \(\sin x - {1 \over {\sin x}} = {\sin ^2}x - {1 \over {{{\sin }^2}x}}\left( 2 \right)\)

Điều kiện sinx ≠ 0

\(\eqalign{
& \left( 2 \right) \Leftrightarrow \left( {\sin x - {{\sin }^2}x} \right) + \left( {{1 \over {{{\sin }^2}x}} - {1 \over {\sin x}}} \right) = 0 \cr
& \Leftrightarrow \sin x\left( {1 - \sin x} \right) + {{1 - \sin x} \over {{{\sin }^2}x}} = 0 \cr
& \Leftrightarrow \left( {1 - \sin x} \right)\left( {{{\sin }^3}x + 1} \right) = 0 \cr
& \Leftrightarrow \left[ \matrix{
\sin x = 1 \hfill \cr
\sin x = - 1 \hfill \cr} \right. \Rightarrow x = {\pi \over 2} + k\pi ,k \in Z \cr} \)

(thỏa mãn điều kiện)

c) \(\cos x\tan 3x = \sin 5x\left( 3 \right)\)

Điều kiện: cos3x ≠ 0. Khi đó,

\(\eqalign{
& \left( 3 \right) \Leftrightarrow \cos x\sin 3x = \cos 3x\sin 5x \cr
& \Leftrightarrow {1 \over 2}\left( {\sin 4x + \sin 2x} \right) = {1 \over 2}\left( {\sin 8x + \sin 2x} \right) \cr
& \Leftrightarrow \sin 8x = \sin 4x \cr
& \Leftrightarrow \left[ \matrix{
8x = 4x + k2\pi ,k \in Z \hfill \cr
8x = \pi - 4x + k2\pi ,k \in Z \hfill \cr} \right. \cr
& \Rightarrow \left[ \matrix{
x = k{\pi \over 2},k \in Z \hfill \cr
x = {\pi \over {12}} + k{\pi \over 6},k \in Z \hfill \cr} \right. \cr} \)

Kết hợp với điều kiện ta được nghiệm của phương trình là:

\(x = k\pi ,k \in Z\) và \(x = {\pi \over {12}} + k{\pi \over 6},k \in Z\)

d) \(2{\tan ^2}x + 3\tan x + 2{\cot ^2}x + 3\cot x + 2 = 0\left( 4 \right)\)

Điều kiện: cosx ≠ 0 và sinx ≠ 0. Khi đó,

\(\eqalign{
& \left( 4 \right) \Leftrightarrow 2\left( {{{\tan }^2}x + {{\cot }^2}x} \right) + 3\left( {\tan x + \cot x} \right) + 2 = 0 \cr
& \Leftrightarrow 2\left[ {{{\left( {\tan x + \cot x} \right)}^2} - 2} \right] + 3\left( {\tan x + \cot x} \right) + 2 = 0 \cr}\)

Đặt t = tanx + cotx ta được phương trình

\(2{t^2} + 3t - 2 = 0 \Rightarrow t = - 2,t = {1 \over 2}\)

Với t = -2 ta có tanx + cotx = -2

\(\eqalign{
& \Leftrightarrow {\tan ^2}x + 2\tan x + 1 = 0 \Rightarrow \tan x = - 1 \cr
& \Rightarrow x = - {\pi \over 4} + k\pi ,k \in Z{\rm{ }} \cr} \)

(thỏa mãn điều kiện)

Với \(t = {1 \over 2}\) ta có \(\tan x + \cot x = {1 \over 2} \Leftrightarrow 2{\tan ^2}x - \tan x + 2 = 0\)

Phương trình này vô nghiệm.

Vậy nghiệm của phương trình (4) là \(x = - {\pi \over 4} + k\pi ,k \in Z\)

Bài 3.8 trang 36 Sách bài tập (SBT) Đại số và giải tích 11

Giải phương trình

\(\cot x - \tan x + 4\sin 2x = {2 \over {\sin 2x}}\)

Giải

Hướng dẫn: Đối với những phương trình lượng giác chứa tanx, cotx, sin2x hoặc cos2x, ta có thể đưa về phương trình chứa cosx, sinx, sin2x, hoặc cos2x ngoài ra cũng có thể đặt ẩn phụ t = tanx để đưa về một phương trình theo t.

Cách 1: Điều kiện của phương trình:

\(\sin 2x \ne 0 \Leftrightarrow \cos 2x \ne \pm 1{\rm{ }}\left( 1 \right)\)

Ta có:

\(\eqalign{
& \cot x - \tan x + 4\sin 2x = {2 \over {\sin 2x}} \cr
& \Leftrightarrow {{\cos x} \over {\sin x}} - {{\sin x} \over {\cos x}} + 4\sin 2x - {2 \over {\sin 2x}} = 0 \cr
& \Leftrightarrow {{{{\cos }^2}x - {{\sin }^2}x} \over {\sin x.\cos x}} + 4\sin 2x - {2 \over {\sin 2x}} = 0 \cr
& \Leftrightarrow {{2\cos 2x} \over {\sin 2x}} + 4\sin 2x - {2 \over {\sin 2x}} = 0 \cr
& \Leftrightarrow 2\cos 2x + 4{\sin ^2}2x - 2 = 0 \cr
& \Leftrightarrow \cos 2x + 2\left( {1 - {{\cos }^2}2x} \right) - 1 = 0 \cr
& \Leftrightarrow 2{\cos ^2}2x - \cos 2x - 1 = 0 \cr
& \Leftrightarrow \left[ \matrix{
\cos 2x = 1{\rm{ (loại)}} \hfill \cr
\cos 2x = - {1 \over 2} \hfill \cr} \right. \cr
& \Leftrightarrow 2x = \pm {{2\pi } \over 3} + k2\pi ,k \in Z \cr
& \Leftrightarrow x = \pm {\pi \over 3} + k\pi ,k \in Z \cr} \)

Cách 2. Đặt t = tanx

Điều kiện t ≠ 0

Phương trình đã cho có dạng

\(\eqalign{
& {1 \over t} - t + 4.{{2t} \over {1 + {t^2}}} = {{1 + {t^2}} \over t} \cr
& \Leftrightarrow {{1 - {t^2}} \over t} + {{8t} \over {1 + {t^2}}} - {{1 + {t^2}} \over t} = 0 \cr
& \Leftrightarrow 1 - {t^4} + 8{t^2} - {\left( {1 + {t^2}} \right)^2} = 0 \cr
& \Leftrightarrow - 2{t^4} + 8{t^2} - 2{t^2} = 0 \cr
& \Leftrightarrow {t^4} - 3{t^2} = 0 \cr
& \Rightarrow {t^2}\left( {{t^3} - 3} \right) = 0 \cr
& \Leftrightarrow \left[ \matrix{
t = 0{\rm{ }}\left( {{\rm{loại \,\, do}}\left( 2 \right)} \right) \hfill \cr
t = \pm \sqrt 3 \hfill \cr} \right. \cr
& \tan x = \pm \sqrt 3 \Leftrightarrow x = \pm {\pi \over 3} + k\pi ,k \in Z \cr} \)

                                                                    congdong.edu.vn


Giáo trình
Thể loại: Lớp 11
Số bài: 123

Bạn cần hỗ trợ? Nhấc máy lên và gọi ngay cho chúng tôi -hotline@tnn.vn
hoặc

  Hỗ trợ trực tuyến

Giao hàng toàn quốc

Bảo mật thanh toán

Đổi trả trong 7 ngày

Tư vẫn miễn phí