Danh mục menu
Lớp 11 - SBT Toán học Giải bài 3.5, 3.6, 3.7, 3.8 trang 169 Sách bài tập Đại số và giải tích 11

Bài 3.5 trang 169 Sách bài tập (SBT) Đại số và giải tích 11

Xét tính liên tục của các hàm số sau:

a) \(f\left( x \right) = \sqrt {x + 5}\) tại x = 4 ;

b)

\(g\left( x \right) = \left\{ \matrix{
{{x - 1} \over {\sqrt {2 - x} - 1}},\,\,{\rm{ nếu }}\,\,x \le 1 \hfill \cr
- 2x{\rm{ ,\,\, nếu }}\,\,x \ge 1 \hfill \cr} \right.\) tại x = 1

 

Giải:

a) Hàm số \(f\left( x \right) = \sqrt {x + 5} \) có tập xác định là \({\rm{[}} - 5{\rm{ }};{\rm{ }} + \infty )\). Do đó, nó xác định trên khoảng \(\left( { - 5{\rm{ }};{\rm{ }} + \infty } \right)\) chứa x = 4

Vì \(\mathop {\lim }\limits_{x \to 4} f\left( x \right) = \mathop {\lim }\limits_{x \to 4} \sqrt {x + 5} = 3 = f\left( 4 \right)\) nên \(f\left( x \right)\) liên tục tại x = 4

b) Hàm số: \(g\left( x \right) = \left\{ \matrix{
{{x - 1} \over {\sqrt {2 - x} - 1}},\,\,{\rm{ nếu }}\,\,x \le 1 \hfill \cr
- 2x{\rm{ ,\,\, nếu }}\,\,x \ge 1 \hfill \cr} \right.\) tại x = 1 có tập xác định là R

Ta có, \(g\left( 1 \right) = - 2\) (1)

\(\eqalign{
& \mathop {\lim }\limits_{x \to {1^ - }} g\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} {{x - 1} \over {\sqrt {2 - x} - 1}} \cr
& = \mathop {\lim }\limits_{x \to {1^ - }} {{\left( {x - 1} \right)\left( {\sqrt {2 - x} + 1} \right)} \over {1 - x}} \cr
& = \mathop {\lim }\limits_{x \to {1^ - }} \left( { - \sqrt {2 - x} - 1} \right) = - 2 \cr}\) (2)

\(\mathop {\lim }\limits_{x \to {1^ + }} g\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} \left( { - 2x} \right) = - 2\) (3)

Từ (1), (2) và (3) suy ra \(\mathop {\lim }\limits_{x \to 1} g\left( x \right) = - 2 = g\left( 1 \right)\)

Vậy g(x) liên tục tại x = 1

Bài 3.6 trang 169 Sách bài tập (SBT) Đại số và giải tích 11

Xét tính liên tục của các hàm số sau trên tập xác định của chúng :

a)

\(f\left( x \right) = \left\{ \matrix{
{{{x^2} - 2} \over {x - \sqrt 2 }},\,{\rm{ nếu }}\,\,x \ne \sqrt 2 \hfill \cr
2\sqrt 2 {\rm{ , \,\,nếu }}\,\,x = \sqrt 2 \hfill \cr} \right.\) ;

b)

\(g\left( x \right) = \left\{ \matrix{
{{1 - x} \over {{{\left( {x - 2} \right)}^2}}},\,\,{\rm{ nếu }}\,\,x \ne 2 \hfill \cr
3{\rm{ ,\,\, nếu }}\,\,x = 2 \hfill \cr} \right.\)

Giải:

a) \(f\left( x \right) = \left\{ \matrix{
{{{x^2} - 2} \over {x - \sqrt 2 }},\,{\rm{ nếu }}\,\,x \ne \sqrt 2 \hfill \cr
2\sqrt 2 {\rm{ , \,\,nếu }}\,\,x = \sqrt 2 \hfill \cr} \right.\) ;

Tập xác định của hàm số là D = R

- Nếu \(x \ne \sqrt 2 \) thì \(f\left( x \right) = {{{x^2} - 2} \over {x - \sqrt 2 }}\)

Đây là hàm phân thức hữu tỉ nên liên tục trên các khoảng \(\left( { - \infty {\rm{ }};{\rm{ }}\sqrt 2 } \right)\) và \(\left( {\sqrt 2 {\rm{ }};{\rm{ }} + \infty } \right)\)

- Tại \(x = \sqrt 2 \) :

\(\eqalign{
& \mathop {\lim }\limits_{x \to \sqrt 2 } f\left( x \right) = \mathop {\lim }\limits_{x \to \sqrt 2 } {{{x^2} - 2} \over {x - \sqrt 2 }} \cr
& = \mathop {\lim }\limits_{x \to \sqrt 2 } {{\left( {x - \sqrt 2 } \right)\left( {x + \sqrt 2 } \right)} \over {x - \sqrt 2 }} \cr
& = \mathop {\lim }\limits_{x \to \sqrt 2 } \left( {x + \sqrt 2 } \right) = 2\sqrt 2 = f\left( {\sqrt 2 } \right) \cr}\)

Vậy hàm số liên tục tại \(x = \sqrt 2 \)

Kết luận : \(y = f\left( x \right)\) liên tục trên R

b) \(g\left( x \right) = \left\{ \matrix{
{{1 - x} \over {{{\left( {x - 2} \right)}^2}}},\,\,{\rm{ nếu }}\,\,x \ne 2 \hfill \cr
3{\rm{ ,\,\, nếu }}\,\,x = 2 \hfill \cr} \right.\) có tập xác định là D = R

- Nếu \(x \ne 2\) thì \(g\left( x \right) = {{1 - x} \over {{{\left( {x - 2} \right)}^2}}}\) là hàm phân thức hữu tỉ, nên nó liên tục trên các khoảng \(\left( { - \infty ,2} \right)\) và \(\left( {2, + \infty } \right)\)

Tại x = 2 : \(\mathop {\lim }\limits_{x \to 2} g\left( x \right) = \mathop {\lim }\limits_{x \to 2} {{1 - x} \over {{{\left( {x - 2} \right)}^2}}} = - \infty \)

Vậy hàm số \(y = g\left( x \right)\) không liên tục tại x = 2

Kết luận : \(y = g\left( x \right)\) liên tục trên các khoảng \(\left( { - \infty ,2} \right)\) và \(\left( {2, + \infty } \right)\) nhưng gián đoạn tại x = 2

Bài 3.7 trang 169 Sách bài tập (SBT) Đại số và giải tích 11

Tìm giá trị của tham số m để hàm số

\(f\left( x \right) = \left\{ \matrix{
{{{x^2} - x - 2} \over {x - 2}},\,{\rm{ nếu }}\,\,x \ne 2 \hfill \cr
m{\rm{ , \,\,\,\,\,\,\,\,\,\,\,\,\,,\,nếu }}\,\,x = 2 \hfill \cr} \right.\) liên tục tại x = 2

Giải:

m = 3

Bài 3.8 trang 169 Sách bài tập (SBT) Đại số và giải tích 11

Tìm giá trị của tham số m để hàm số

\(f\left( x \right) = \left\{ \matrix{
{{\sqrt x - 1} \over {{x^2} - 1}},\,\,{\rm{ nếu }}\,\,x \ne 1 \hfill \cr
{m^2}{\rm{ ,\,\, nếu }}\,\,x = 1 \hfill \cr} \right.\) liên tục trên \(\left( {0; + \infty } \right)\)

Giải:

\(m = \pm {1 \over 2}\)

                                                                                   congdong.edu.vn


Giáo trình
Thể loại: Lớp 11
Số bài: 123

Bạn cần hỗ trợ? Nhấc máy lên và gọi ngay cho chúng tôi -hotline@tnn.vn
hoặc

  Hỗ trợ trực tuyến

Giao hàng toàn quốc

Bảo mật thanh toán

Đổi trả trong 7 ngày

Tư vẫn miễn phí