Lớp 11 - SBT Toán học Giải bài 3.5, 3.6, 3.7, 3.8 trang 169 Sách bài tập Đại số và giải tích 11
Bài 3.5 trang 169 Sách bài tập (SBT) Đại số và giải tích 11
Xét tính liên tục của các hàm số sau:
a) \(f\left( x \right) = \sqrt {x + 5}\) tại x = 4 ;
b)
\(g\left( x \right) = \left\{ \matrix{
{{x - 1} \over {\sqrt {2 - x} - 1}},\,\,{\rm{ nếu }}\,\,x \le 1 \hfill \cr
- 2x{\rm{ ,\,\, nếu }}\,\,x \ge 1 \hfill \cr} \right.\) tại x = 1
Giải:
a) Hàm số \(f\left( x \right) = \sqrt {x + 5} \) có tập xác định là \({\rm{[}} - 5{\rm{ }};{\rm{ }} + \infty )\). Do đó, nó xác định trên khoảng \(\left( { - 5{\rm{ }};{\rm{ }} + \infty } \right)\) chứa x = 4
Vì \(\mathop {\lim }\limits_{x \to 4} f\left( x \right) = \mathop {\lim }\limits_{x \to 4} \sqrt {x + 5} = 3 = f\left( 4 \right)\) nên \(f\left( x \right)\) liên tục tại x = 4
b) Hàm số: \(g\left( x \right) = \left\{ \matrix{
{{x - 1} \over {\sqrt {2 - x} - 1}},\,\,{\rm{ nếu }}\,\,x \le 1 \hfill \cr
- 2x{\rm{ ,\,\, nếu }}\,\,x \ge 1 \hfill \cr} \right.\) tại x = 1 có tập xác định là R
Ta có, \(g\left( 1 \right) = - 2\) (1)
\(\eqalign{
& \mathop {\lim }\limits_{x \to {1^ - }} g\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} {{x - 1} \over {\sqrt {2 - x} - 1}} \cr
& = \mathop {\lim }\limits_{x \to {1^ - }} {{\left( {x - 1} \right)\left( {\sqrt {2 - x} + 1} \right)} \over {1 - x}} \cr
& = \mathop {\lim }\limits_{x \to {1^ - }} \left( { - \sqrt {2 - x} - 1} \right) = - 2 \cr}\) (2)
\(\mathop {\lim }\limits_{x \to {1^ + }} g\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} \left( { - 2x} \right) = - 2\) (3)
Từ (1), (2) và (3) suy ra \(\mathop {\lim }\limits_{x \to 1} g\left( x \right) = - 2 = g\left( 1 \right)\)
Vậy g(x) liên tục tại x = 1
Bài 3.6 trang 169 Sách bài tập (SBT) Đại số và giải tích 11
Xét tính liên tục của các hàm số sau trên tập xác định của chúng :
a)
\(f\left( x \right) = \left\{ \matrix{
{{{x^2} - 2} \over {x - \sqrt 2 }},\,{\rm{ nếu }}\,\,x \ne \sqrt 2 \hfill \cr
2\sqrt 2 {\rm{ , \,\,nếu }}\,\,x = \sqrt 2 \hfill \cr} \right.\) ;
b)
\(g\left( x \right) = \left\{ \matrix{
{{1 - x} \over {{{\left( {x - 2} \right)}^2}}},\,\,{\rm{ nếu }}\,\,x \ne 2 \hfill \cr
3{\rm{ ,\,\, nếu }}\,\,x = 2 \hfill \cr} \right.\)
Giải:
a) \(f\left( x \right) = \left\{ \matrix{
{{{x^2} - 2} \over {x - \sqrt 2 }},\,{\rm{ nếu }}\,\,x \ne \sqrt 2 \hfill \cr
2\sqrt 2 {\rm{ , \,\,nếu }}\,\,x = \sqrt 2 \hfill \cr} \right.\) ;
Tập xác định của hàm số là D = R
- Nếu \(x \ne \sqrt 2 \) thì \(f\left( x \right) = {{{x^2} - 2} \over {x - \sqrt 2 }}\)
Đây là hàm phân thức hữu tỉ nên liên tục trên các khoảng \(\left( { - \infty {\rm{ }};{\rm{ }}\sqrt 2 } \right)\) và \(\left( {\sqrt 2 {\rm{ }};{\rm{ }} + \infty } \right)\)
- Tại \(x = \sqrt 2 \) :
\(\eqalign{
& \mathop {\lim }\limits_{x \to \sqrt 2 } f\left( x \right) = \mathop {\lim }\limits_{x \to \sqrt 2 } {{{x^2} - 2} \over {x - \sqrt 2 }} \cr
& = \mathop {\lim }\limits_{x \to \sqrt 2 } {{\left( {x - \sqrt 2 } \right)\left( {x + \sqrt 2 } \right)} \over {x - \sqrt 2 }} \cr
& = \mathop {\lim }\limits_{x \to \sqrt 2 } \left( {x + \sqrt 2 } \right) = 2\sqrt 2 = f\left( {\sqrt 2 } \right) \cr}\)
Vậy hàm số liên tục tại \(x = \sqrt 2 \)
Kết luận : \(y = f\left( x \right)\) liên tục trên R
b) \(g\left( x \right) = \left\{ \matrix{
{{1 - x} \over {{{\left( {x - 2} \right)}^2}}},\,\,{\rm{ nếu }}\,\,x \ne 2 \hfill \cr
3{\rm{ ,\,\, nếu }}\,\,x = 2 \hfill \cr} \right.\) có tập xác định là D = R
- Nếu \(x \ne 2\) thì \(g\left( x \right) = {{1 - x} \over {{{\left( {x - 2} \right)}^2}}}\) là hàm phân thức hữu tỉ, nên nó liên tục trên các khoảng \(\left( { - \infty ,2} \right)\) và \(\left( {2, + \infty } \right)\)
Tại x = 2 : \(\mathop {\lim }\limits_{x \to 2} g\left( x \right) = \mathop {\lim }\limits_{x \to 2} {{1 - x} \over {{{\left( {x - 2} \right)}^2}}} = - \infty \)
Vậy hàm số \(y = g\left( x \right)\) không liên tục tại x = 2
Kết luận : \(y = g\left( x \right)\) liên tục trên các khoảng \(\left( { - \infty ,2} \right)\) và \(\left( {2, + \infty } \right)\) nhưng gián đoạn tại x = 2
Bài 3.7 trang 169 Sách bài tập (SBT) Đại số và giải tích 11
Tìm giá trị của tham số m để hàm số
\(f\left( x \right) = \left\{ \matrix{
{{{x^2} - x - 2} \over {x - 2}},\,{\rm{ nếu }}\,\,x \ne 2 \hfill \cr
m{\rm{ , \,\,\,\,\,\,\,\,\,\,\,\,\,,\,nếu }}\,\,x = 2 \hfill \cr} \right.\) liên tục tại x = 2
Giải:
m = 3
Bài 3.8 trang 169 Sách bài tập (SBT) Đại số và giải tích 11
Tìm giá trị của tham số m để hàm số
\(f\left( x \right) = \left\{ \matrix{
{{\sqrt x - 1} \over {{x^2} - 1}},\,\,{\rm{ nếu }}\,\,x \ne 1 \hfill \cr
{m^2}{\rm{ ,\,\, nếu }}\,\,x = 1 \hfill \cr} \right.\) liên tục trên \(\left( {0; + \infty } \right)\)
Giải:
\(m = \pm {1 \over 2}\)
congdong.edu.vn