Danh mục menu
Lớp 11 - SBT Toán học Giải bài 3.1, 3.2, 3.3 trang 131 Sách bài tập Hình học 11

Bài 3.1 trang 131 Sách bài tập (SBT) Hình học 11

Cho hình lập phương ABCDA’B’C’D’ cạnh a. Gọi O và O’ theo thứ tự là tâm của hai hình vuông ABCD và A’B’C’D’.

a) Hãy biểu diễn các vectơ \(\overrightarrow {AO} ,\overrightarrow {AO'} \) theo các vectơ có điểm đầu và điểm cuối là các đỉnh của hình lập phương đã cho.

b) Chứng minh rằng \(\overrightarrow {A{\rm{D}}} + \overrightarrow {D'C'} + \overrightarrow {D'A'} = \overrightarrow {AB} \).

Giải:

a) *\(\overrightarrow {AO} = {1 \over 2}\overrightarrow {AC} = {1 \over 2}\overrightarrow {A'C'} = {1 \over 2}\left( {\overrightarrow {AB} + \overrightarrow {A{\rm{D}}} } \right)\)

\(\overrightarrow {AO} = \overrightarrow {AB} + \overrightarrow {BO} = \overrightarrow {AB} + {1 \over 2}\overrightarrow {B{\rm{D}}} ,v.v....\)

*\(\overrightarrow {AO} = {1 \over 2}\overrightarrow {AC} + \overrightarrow {AA'} \)

\(\eqalign{
& = {1 \over 2}\left( {\overrightarrow {AA'} + \overrightarrow {AC'} } \right) = {1 \over 2}\left( {\overrightarrow {AB'} + \overrightarrow {AD'} } \right) \cr
& = \overrightarrow {AA'} + \overrightarrow {A'B'} + {1 \over 2}\overrightarrow {B'D'} \cr
& = \overrightarrow {AB} + \overrightarrow {BB'} + {1 \over 2}\overrightarrow {B'D'} ,v.v... \cr} \)

b) \(\overrightarrow {AD} + \overrightarrow {D'C'} + \overrightarrow {D'A'} = \overrightarrow {AD} + \overrightarrow {DC} + \overrightarrow {CB} \)

(vì \(\overrightarrow {D'C'} = \overrightarrow {DC} \) và \(\overrightarrow {D'A'} = \overrightarrow {CB} \)) nên \(\overrightarrow {A{\rm{D}}} + \overrightarrow {D'C'} + \overrightarrow {D'A'} = \overrightarrow {AB} \).

 

Bài 3.2 trang 131 Sách bài tập (SBT) Hình học 11

Trong không gian cho điểm O và bốn điểm A, B, C, D phân biệt và không thẳng hàng. Chứng minh rằng điều kiện cần và đủ để bốn điểm A, B, C, D tạo thành một hình bình hành là:

\(\overrightarrow {OA} + \overrightarrow {OC} = \overrightarrow {OB} + \overrightarrow {O{\rm{D}}} \)

Giải:

Giả sử bốn điểm A, B, C, D tạo thành một hình bình hành ta có:

\(\overrightarrow {BC} = \overrightarrow {A{\rm{D}}} \Leftrightarrow \overrightarrow {OC} - \overrightarrow {OB} = \overrightarrow {O{\rm{D}}} - \overrightarrow {OA} \) (với điểm O bất kì )

\( \Leftrightarrow \overrightarrow {OC} + \overrightarrow {OA} = \overrightarrow {O{\rm{D}}} + \overrightarrow {OB} \)

Ngược lại, giả sử ta có hệ thức:

\(\overrightarrow {OC} + \overrightarrow {OA} = \overrightarrow {O{\rm{D}}} + \overrightarrow {OB} \)

\( \Leftrightarrow \overrightarrow {OC} - \overrightarrow {OB} = \overrightarrow {O{\rm{D}}} - \overrightarrow {OA} \)

\( \Leftrightarrow \overrightarrow {BC} = \overrightarrow {A{\rm{D}}} \)

Vì A, B, C, D không thẳng hàng nên tứ giác ABCD là hình bình hành.

 

Bài 3.3 trang 131 Sách bài tập (SBT) Hình học 11

Cho tứ diện ABCD. Gọi P và Q lần lượt là trung điểm của các cạnh AB và CD. Trên các cạnh AC và BD lần lượt ta lấy các điểm M, N sao cho

\({{AM} \over {AC}} = {{BN} \over {B{\rm{D}}}} = k\left( {k > 0} \right)\)

Chứng minh rằng ba vectơ \(\overrightarrow {PQ} ,\overrightarrow {PM} ,\overrightarrow {PN} \) đồng phẳng.

Giải:

Ta có:

\(\eqalign{
& \overrightarrow {PQ} = {1 \over 2}\left( {\overrightarrow {PC} + \overrightarrow {P{\rm{D}}} } \right) \cr
& = {1 \over 2}\left[ {\left( {\overrightarrow {AC} - \overrightarrow {AP} } \right) + \left( {\overrightarrow {B{\rm{D}}} - \overrightarrow {BP} } \right)} \right] \cr
& = {1 \over 2}\left[ {\left( {\overrightarrow {AC} + \overrightarrow {B{\rm{D}}} } \right) - \underbrace {\left( {\overrightarrow {AP} + \overrightarrow {BP} } \right)}_{\overrightarrow 0 }} \right] \cr
& = {1 \over 2}.{1 \over k}\left( {\overrightarrow {AM} + \overrightarrow {BN} } \right) \cr} \)

Vì \(\overrightarrow {AC} = {1 \over k}.\overrightarrow {AM} \) và \(\overrightarrow {B{\rm{D}}} = {1 \over k}.\overrightarrow {BN} \)

Đồng thời \(\overrightarrow {AM} = \overrightarrow {AP} + \overrightarrow {PM} \) và \(\overrightarrow {BN} = \overrightarrow {BP} + \overrightarrow {PN} \), nên \(\overrightarrow {PQ} = {1 \over {2k}}\left( {\overrightarrow {PM} + \overrightarrow {PN} } \right)\) vì \(\overrightarrow {AP} + \overrightarrow {BP} = \overrightarrow 0 \)

Vậy \(\overrightarrow {PQ} = {1 \over {2k}}\overrightarrow {PM} + {1 \over {2k}}\overrightarrow {PN} \)

Do đó ba vectơ \(\overrightarrow {PQ} ,\overrightarrow {PM} ,\overrightarrow {PN} \) đồng phẳng.

                                                   congdong.edu.vn


Giáo trình
Thể loại: Lớp 11
Số bài: 123

Bạn cần hỗ trợ? Nhấc máy lên và gọi ngay cho chúng tôi -hotline@tnn.vn
hoặc

  Hỗ trợ trực tuyến

Giao hàng toàn quốc

Bảo mật thanh toán

Đổi trả trong 7 ngày

Tư vẫn miễn phí