Danh mục menu
Lớp 11 - SBT Toán học Giải bài 3.5, 3.6, 3.7, 3.8 trang 118 Sách bài tập (SBT) Đại số và giải tích 11

Bài 3.5 trang 118 Sách bài tập (SBT) Đại số và giải tích 11

Tìm cấp số cộng \(\left( {{u_n}} \right)\) biết

a)

\(\left\{ \matrix{
{u_1} + {u_2} + {u_3} = 27 \hfill \cr
u_1^2 + u_2^2 + u_3^2 = 275 \hfill \cr} \right.\)

b)

\(\left\{ \matrix{
{u_1} + {u_2} + ... + {u_n} = a \hfill \cr
u_1^2 + u_2^2 + ... + u_n^2 = {b^2} \hfill \cr} \right.\)

Giải:

a) Ta có hệ

\(\left\{ \matrix{
{u_1} + {u_2} + {u_3} = 27\,\,\,\left( 1 \right) \hfill \cr
u_1^2 + u_2^2 + u_3^2 = 275\,\,\,\left( 2 \right) \hfill \cr} \right.\)

Áp dụng công thức \({u_1} + {u_3} = 2{u_2}\) suy ra \({u_2} = 9\,\,\,\left( 3 \right)\)

Thay \({u_2} = 9\) vào (1) và (2) ta được

\(\left\{ \matrix{
{u_1} + {u_3} = 18 \hfill \cr
u_1^2 + u_3^2 = 194 \hfill \cr} \right.\)

Từ đây tìm được \({u_1} = 5,{u_3} = 13\) hoặc \({u_1} = 13,{u_3} = 5\)

Vậy ta có hai cấp số cộng 5, 9, 13 và 13, 9, 5

b) Ta có

\(\eqalign{
& {b^2} = u_1^2 + {\left( {{u_1} + d} \right)^2} + ... + {\left[ {{u_1} + \left( {n - 1} \right)d} \right]^2} \cr
& {\rm{ = }}nu_1^2 + 2{u_1}d\left[ {1 + 2 + ... + \left( {n - 1} \right)} \right] + {d^2}\left[ {{1^2} + {2^2} + ... + {{\left( {n - 1} \right)}^2}} \right] \cr
& {\rm{ = }}nu_1^2 + n\left( {n - 1} \right){u_1}d + {{n\left( {n - 1} \right)\left( {2n - 1} \right){d^2}} \over 6}\,\,\,\,\,\,\,\,(1){\rm{ }} \cr} \)

Mặt khác, \(a = n{u_1} + {{n\left( {n - 1} \right)d} \over 2}\,\,\,\,\,\,\left( 2 \right)\)

Từ (2) tìm được \({u_1}\) thay \({u_1}\) vào (1) đểm tìm d.

Kết quả \(d = \pm \sqrt {{{12\left( {n{b^2} - {a^2}} \right)} \over {{n^2}\left( {{n^2} - 1} \right)}}} \)

\({u_1} = {1 \over n}\left[ {a - {{n\left( {n - 1} \right)} \over 2}d} \right].\)

Bài 3.6 trang 118 Sách bài tập (SBT) Đại số và giải tích 11

Cho ba góc \(\alpha ,\beta ,\gamma \) tạo thành một cấp số cộng theo thứ tự đó với công sai \(d = {\pi \over 3}\)

Chứng minh :

a) \(\tan \alpha .\tan \beta + \tan \beta .\tan \gamma + \tan \gamma .\tan \alpha = - 3\) ;

b) \(4\cos \alpha .\cos \beta .\cos \gamma = \cos 3\beta \)

Giải:

Từ cấp số cộng \(\alpha ,\beta ,\gamma \) với công sai \(d = {\pi \over 3}\) suy ra

\(\alpha = \beta - {\pi \over 3};\gamma = \beta + {\pi \over 3}\)

Thay \(\alpha ,\gamma \) vào hệ thức và áp dụng công thức cộng cung.

Bài 3.7 trang 118 Sách bài tập (SBT) Đại số và giải tích 11

Cho cấp số cộng \(\left( {{u_n}} \right)\) chứng minh rằng

Nếu \({{{S_m}} \over {{S_n}}} = {{{m^2}} \over {{n^2}}}\)

Thì \({{{u_m}} \over {{u_n}}} = {{2m - 1} \over {2n - 1}}\)

Giải:

Ta có \({S_m} = {{2{u_1} + \left( {m - 1} \right)d} \over 2}m\) ;

\({S_n} = {{2{u_1} + \left( {n - 1} \right)d} \over 2}n.\)

Theo giả thiết

\({{{S_m}} \over {{S_n}}} = {{\left[ {2{u_1} + \left( {m - 1} \right)d} \right]m} \over {\left[ {2{u_1} + \left( {n - 1} \right)d} \right]n}} = {{{m^2}} \over {{n^2}}}\)

Suy ra \(\left( {2{u_1} - d} \right)\left( {m - n} \right) = 0\) (với m ≠ n ).

Từ đó \({u_1} = {d \over 2}\)

Vậy \({{{u_m}} \over {{u_n}}} = {{{u_1} + \left( {m - 1} \right)d} \over {{u_1} + \left( {n - 1} \right)d}} = {{{d \over 2} + \left( {m - 1} \right)d} \over {{d \over 2} + \left( {n - 1} \right)d}} = {{2m - 1} \over {2n - 1}}\)

Bài 3.8 trang 118 Sách bài tập (SBT) Đại số và giải tích 11

Tìm x từ phương trình

a) 2 + 7 + 12 + ... + x = 245, biết 2, 7, 12, ..., x là cấp số cộng.

b) \(\left( {2x + 1} \right) + \left( {2x + 6} \right) + \left( {2x + 11} \right) + ... + \left( {2x + 96} \right) = 1010\) biết 1, 6, 11, ... là cấp số cộng.

Giải:

a) Ta có

\(\eqalign{
& {u_1} = 2,d = 5,{S_n} = 245. \cr
& 245 = {{n\left[ {2.2 + \left( {n - 1} \right)5} \right]} \over 2} \cr
& \Leftrightarrow 5{n^2} - n - 490 = 0. \cr}\)

Giải ra được n = 10

Từ đó tìm được \(x = u{ _{10}} = 2 + 9.5 = 47\)

b) Xét cấp số cộng 1, 6, 11, ..., 96. Ta có

\(96 = 1 + \left( {n - 1} \right)5 \Rightarrow n = 20\)

Suy ra \({S_{20}} = 1 + 6 + 11 + ... + 96 = {{20\left( {1 + 96} \right)} \over 2} = 970\)

Và 2x.20 + 970 = 1010

Từ đó x = 1

                                                                                                     congdong.edu.vn


Giáo trình
Thể loại: Lớp 11
Số bài: 123

Bạn cần hỗ trợ? Nhấc máy lên và gọi ngay cho chúng tôi -hotline@tnn.vn
hoặc

  Hỗ trợ trực tuyến

Giao hàng toàn quốc

Bảo mật thanh toán

Đổi trả trong 7 ngày

Tư vẫn miễn phí