Lớp 11 - SBT Toán học Giải bài 3.4, 3.5, 3.6 trang 69 Sách bài tập Đại số và giải tích 11
Bài 3.4 trang 69 Sách bài tập (SBT) Đại số và giải tích 11
Trong khai triển ${\left( {1 + ax} \right)^n}$ ta có số hạng đầu là 1, số hạng thứ hai là 24x, số hạng thứ ba là 252x2. Hãy tìm a và n.
Giải:
Ta có: \({\left( {1 + ax} \right)^n} = 1 + C_n^1ax + C_n^2{a^2}{x^2} + ...\)
Theo bài ra:
\(\eqalign{
& \left\{ \matrix{
C_n^1a = 24 \hfill \cr
C_n^2{a^2} = 252 \hfill \cr} \right. \cr
& \Rightarrow \left\{ \matrix{
na = 24 \hfill \cr
{{n\left( {n - 1} \right){a^2}} \over 2} = 252 \hfill \cr} \right. \cr
& \Rightarrow \left\{ \matrix{
na = 24 \hfill \cr
\left( {n - 1} \right)a = 21 \hfill \cr} \right. \cr
& \Rightarrow \left\{ \matrix{
a = 3 \hfill \cr
n = 8 \hfill \cr} \right.. \cr} \)
Bài 3.5 trang 69 Sách bài tập (SBT) Đại số và giải tích 11
Trong khai triển của \({\left( {x + a} \right)^3}{\left( {x - b} \right)^6}\), hệ số của x7 là -9 và không có số hạng chứa x8. Tìm a và b.
Giải:
Số hạng chứa x7 là \(\left( {C_3^0.C_6^2{{\left( { - b} \right)}^2} + C_3^1a.C_6^1\left( { - b} \right) + C_3^2{a^2}C_6^0} \right){x^7}\)
Số hạng chứa x8 là \(\left( {C_3^0.C_6^1\left( { - b} \right) + C_3^1a.C_6^0} \right){x^8}\)
Theo bài ra ta có
\(\eqalign{
& \left\{ \matrix{
15{b^2} - 18ab + 3{a^2} = - 9 \hfill \cr
- 6b + 3a = 0 \hfill \cr} \right. \cr
& \Rightarrow \left\{ \matrix{
a = 2b \hfill \cr
{b^2} = 1 \hfill \cr} \right. \cr
& \Rightarrow \left[ \matrix{
\left\{ \matrix{
a = 2 \hfill \cr
b = 1 \hfill \cr} \right. \hfill \cr
\left\{ \matrix{
a = - 2 \hfill \cr
b = - 1 \hfill \cr} \right. \hfill \cr} \right.. \cr}\)
Bài 3.6 trang 69 Sách bài tập (SBT) Đại số và giải tích 11
Xác định hệ số của số hạng chứa trong khai triển \({\left( {{x^2} - {2 \over x}} \right)^n}\) nếu biết tổng các hệ số của ba số hạng đầu trong khai triển đó bằng 97.
Giải:
Ta có:
\({\left( {{x^2} - {2 \over x}} \right)^n} = C_n^0{\left( {{x^2}} \right)^n} + C_n^1{\left( {{x^2}} \right)^{n - 1}}.\left( { - {2 \over x}} \right) + C_n^2{\left( {{x^2}} \right)^{n - 2}}.{\left( { - {2 \over x}} \right)^2} + ...\)
Theo giả thiết, ta có:
\(\eqalign{
& C_n^0 - 2C_n^1 + 4C_n^2 = 97 \cr
& \Leftrightarrow 1 - 2n + 2n\left( {n - 1} \right) - 97 = 0 \cr
& \Leftrightarrow {n^2} - 2n - 48 = 0 \cr
& \Leftrightarrow \left[ \matrix{
n = 8 \hfill \cr
n = - 6{\rm{ }}\left( {loại} \right) \hfill \cr} \right. \cr}\)
Vậy n = 8. Từ đó ta có:
\(\eqalign{
& {\left( {{x^2} - {2 \over x}} \right)^8} \cr
& = \sum\limits_{k = 0}^8 {C_8^k{{\left( {{x^2}} \right)}^{8 - k}}{{\left( { - {2 \over x}} \right)}^k}} \cr
& = \sum\limits_{k = 0}^8 {{{\left( { - 2} \right)}^k}.C_8^k.{x^{16 - 3k}}} \cr} \)
Như vậy, ta phải có \(16 - 3k = 4 \Leftrightarrow k = 4\).
Do đó hệ số của số hạng chứa x4 là \({\left( { - 2} \right)^4}.C_8^4 = 1120\).
congdong.edu.vn