Lớp 12 - SBT Toán học Giải bài 3.5, 3.6, 3.7, 3.8 trang 102 Sách bài tập Hình học 12
Bài 3.5 trang 102 sách bài tập (SBT) – Hình học 12
Trong không gian Oxyz, hãy tìm trên mặt phẳng (Oxz) một điểm M cách đều ba điểm A(1; 1; 1), B(-1; 1; 0), C(3; 1; -1).
Hướng dẫn làm bài:
Điểm M thuộc mặt phẳng (Oxz) có tọa độ là (x; 0; z), cần phải tìm x và z. Ta có:
MA2 = (1 – x)2 + 1 + (1 – z)2
MB2 = (–1 – x)2 + 1 + z2
MC2 = (3 – x)2 + 1 + (–1 – z)2
Theo giả thiết M cách đều ba điểm A, B, C nên ta có MA2 = MB2 = MC2
Từ đó ta tính được \(M({5 \over 6};0; - {7 \over 6})\)
Bài 3.6 trang 102 sách bài tập (SBT) – Hình học 12
Cho hình tứ diện ABCD. Chứng minh rằng:
a) \(\overrightarrow {AC} + \overrightarrow {BD} = \overrightarrow {AD} + \overline {BC} \)
b)\(\overrightarrow {AB} = {1 \over 2}\overrightarrow {AC} + {1 \over 2}\overrightarrow {AD} + {1 \over 2}\overrightarrow {CD} + \overrightarrow {DB} \)
Hướng dẫn làm bài:
a) Ta có: \(\overrightarrow {AC} = \overrightarrow {AD} + \overrightarrow {DC} \)
\(\overrightarrow {BD} = \overrightarrow {BC} + \overrightarrow {CD} \)
Do đó: \(\overrightarrow {AC} + \overrightarrow {BD} = \overrightarrow {AD} + \overrightarrow {BC} \) vì \(\overrightarrow {DC} = - \overrightarrow {CD} \)
b) Vì \(\overrightarrow {AB} = \overrightarrow {AD} + \overrightarrow {DB} \) và \(\overrightarrow {AD} = \overrightarrow {AC} + \overrightarrow {CD} \) nên \(\overrightarrow {AB} = \overrightarrow {AC} + \overrightarrow {CD} + \overrightarrow {DB} \)
Do đó: \(2\overrightarrow {AB} = \overrightarrow {AC} + \overrightarrow {AD} + \overrightarrow {CD} + 2\overrightarrow {DB} \)
Vậy \(\overrightarrow {AB} = {1 \over 2}\overrightarrow {AC} + {1 \over 2}\overrightarrow {AD} + {1 \over 2}\overrightarrow {CD} + \overrightarrow {DB} \)
Bài 3.7 trang 102 sách bài tập (SBT) – Hình học 12
Cho hình tứ diện ABCD. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AC, BD, AD, BC. Chứng minh rằng:
a) \(\overrightarrow {AB} + \overrightarrow {CD} = \overrightarrow {AD} + \overrightarrow {CB} = 2\overrightarrow {MN} \)
b) \(\overrightarrow {AB} - \overrightarrow {CD} = \overrightarrow {AC} - \overrightarrow {BD} = 2\overrightarrow {PQ} \)
Hướng dẫn làm bài:
a) Ta có MPNQ là hình bình hành vì \(\overrightarrow {MP} = \overrightarrow {QN} = {1 \over 2}\overrightarrow {CD} \) và \(\overrightarrow {MQ} = \overrightarrow {PN} = {1 \over 2}\overrightarrow {AB} \).
Do đó \(\overrightarrow {MN} = \overrightarrow {MQ} + \overrightarrow {MP} = {{\overrightarrow {AB} } \over 2} + {{\overrightarrow {CD} } \over 2}\) hay \(2\overrightarrow {MN} = \overrightarrow {AB} + \overrightarrow {CD} \) (1)
Mặt khác \(\overrightarrow {AB} = \overrightarrow {AD} + \overrightarrow {DB} \)
\(\overrightarrow {CD} = \overrightarrow {CB} + \overrightarrow {BD} \)
Nên \(\overrightarrow {AB} + \overrightarrow {CD} = \overrightarrow {AD} + \overrightarrow {CB} \) (2)
Vì \(\overrightarrow {DB} = - \overrightarrow {BD} \)
Từ (1) và (2) ta có: \(\overrightarrow {AB} + \overrightarrow {CD} = \overrightarrow {AD} + \overrightarrow {CB} = 2\overrightarrow {MN} \) là đẳng thức cần chứng minh.
b) Ta có: \(\overrightarrow {PQ} = \overrightarrow {MQ} - \overrightarrow {MP} = {{\overrightarrow {AB} } \over 2} - {{\overrightarrow {CD} } \over 2}\)
Do đó: \(2\overrightarrow {PQ} = \overrightarrow {AB} - \overrightarrow {CD} \) (3)
Mặt khác: \(\overrightarrow {AB} = \overrightarrow {AC} + \overrightarrow {CB} \)
\(\overrightarrow {CD} = \overrightarrow {BD} - \overrightarrow {BC} \)
Nên \(\overrightarrow {AB} - \overrightarrow {CD} = \overrightarrow {AC} - \overrightarrow {BD} \) (4)
Vì \(\overrightarrow {CB} - ( - \overrightarrow {BC} ) = \overrightarrow 0 \)
Từ (3) và (4) ta suy ra \(\overrightarrow {AB} - \overrightarrow {CD} = \overrightarrow {AC} - \overrightarrow {BD} = 2\overrightarrow {PQ} \) là đẳng thức cần chứng minh.
Bài 3.8 trang 102 sách bài tập (SBT) – Hình học 12
Trong không gian cho ba vecto tùy ý \(\overrightarrow a ,\overrightarrow b ,\overrightarrow c \) . Gọi \(\overrightarrow u = \overrightarrow a - 2\overrightarrow b ,\overrightarrow v = 3\overrightarrow b - \overrightarrow c ,\overrightarrow {\rm{w}} = 2\overrightarrow c - 3\overrightarrow a \) .
Chứng tỏ rằng ba vecto \(\overrightarrow u ,\overrightarrow v ,\overrightarrow {\rm{w}} \) đồng phẳng.
Hướng dẫn làm bài:
Muốn chứng tỏ rằng ba vecto \(\overrightarrow u ,\overrightarrow v ,\overrightarrow {\rm{w}} \) đồng phẳng ta cần tìm hai số thực p và q sao cho \(\overrightarrow {\rm{w}} = p\overrightarrow u + q\overrightarrow v \).
Giả sử có \(\overrightarrow {\rm{w}} = p\overrightarrow u + q\overrightarrow v \)
\(2\overrightarrow c - 3\overrightarrow a = p(\overrightarrow a - 2\overrightarrow b ) + q(3\overrightarrow b - \overrightarrow c )\)
\(\Leftrightarrow (3 + p)\overrightarrow a + (3q - 2p)\overrightarrow b - (q + 2)\overrightarrow c = \overrightarrow 0 \) (1)
Vì ba vecto lấy tùy ý \(\overrightarrow a ,\overrightarrow b ,\overrightarrow c \) nên đẳng thức (1) xảy ra khi và chỉ khi:
\(\left\{ {\matrix{{3 + p = 0} \cr {3q - 2p = 0} \cr {q + 2 = 0} \cr} } \right. \Rightarrow \left\{ {\matrix{{p = - 3} \cr {q = - 2} \cr} } \right.\)
Như vậy ta có: \(\overrightarrow {\rm{w}} = - 3\overrightarrow u - 2\overrightarrow v \) nên ba vecto \(\overrightarrow u ,\overrightarrow v ,\overrightarrow {\rm{w}} \) đồng phẳng.
congdong.edu.vn