Lớp 12 - SBT Toán học Giải bài 1.11, 1.12, 1.13 trang 15 Sách bài tập Giải tích 12
Bài 1.11 trang 15 Sách bài tập (SBT) Giải tích 12
Tìm cực trị của các hàm số sau:
a) \(y = - 2{x^2} + 7x - 5\)
b) \(y = {x^3} - 3{x^2} - 24x + 7\)
c) \(y = {x^4} - 5{x^2} + 4\)
d) \(y = {(x + 1)^3}(5 - x)\)
e) \(y = {(x + 2)^2}{(x - 3)^3}\)
Hướng dẫn làm bài:
a) \(y = - 2{x^2} + 7x - 5\) . TXĐ: R
\(\eqalign{
& y' = - 4x + 7,y' = 0 < = > x = {7 \over 4} \cr
& y'' = - 4 = > y''({7 \over 4}) = - 4 < 0 \cr} \)
Vậy \(x = {7 \over 4}\) là điểm cực đại của hàm số và \({y_{CD}} = {9 \over 8}\)
b) \(y = {x^3} - 3{x^2} - 24x + 7\) . TXĐ: R
\(y' = 3{x^2} - 6x - 24 = 3({x^2} - 2x - 8)\)
\(y' = 0 \Leftrightarrow \left[ \matrix{
x = - 2 \hfill \cr
x = 4 \hfill \cr} \right.\)
Vì \(y''( - 2) = - 18 < 0,y''(4) = 18 > 0\) nên hàm số đạt cực đại tại x = - 2 ; đạt cực tiểu tại x = 4 và yCĐ = y(-2) = 35 ; yCT = y(4) = -73.
c) \(y = {x^4} - 5{x^2} + 4\)
TXĐ: R
\(\eqalign{
& = {{2{x^2} - 2{m^2} - {x^2} - 2mx + 3} \over {{{(x - m)}^2}}} = {{{x^2} - 2mx - 2{m^2} + 3} \over {{{(x - m)}^2}}} \cr
& y' = 4{x^3} - 10x = 2x(2{x^2} - 5) \cr} \)
$$y' = 0 \Leftrightarrow \left[ \matrix{
x = 0 \hfill \cr
x = - \sqrt {{5 \over 2}} \hfill \cr
x = \sqrt {{5 \over 2}} \hfill \cr} \right.$$
Vì \(y''( \pm \sqrt {{5 \over 2}} ) = 20 > 0,y''(0) = - 10 < 0\)
Nên hàm số đạt cực đại tại x = 0, đạt cực tiểu tại \(x = \pm \sqrt {{5 \over 2}} \) và ta có:
yCĐ = y(0) = 4 , \({y_{_{CT}}} = y( \pm \sqrt {{5 \over 2}} ) = - {9 \over 4}\)
d) TXĐ: R
\(y' = - {(x + 1)^3} + 3{(x + 1)^2}(5 - x) = 2{(x + 1)^2}(7 - 2x)\)
\(y' = 0 \Leftrightarrow \left[ \matrix{
x = - 1 \hfill \cr
x = {7 \over 2} \hfill \cr} \right.\)
Bảng biến thiên:
Hàm số đạt cực đại tại \(x = {7 \over 2};{y_{CD}} = y({7 \over 2}) = {{2187} \over {16}}\)
e) TXĐ: R
\(y' = 2(x + 2){(x - 3)^3} + 3{(x + 2)^2}{(x - 3)^2} = 5x(x + 2){(x - 3)^2}\)
\(y' = 0 \Leftrightarrow \left[ \matrix{
x = - 2 \hfill \cr
x = 0 \hfill \cr
x = 3 \hfill \cr} \right.\)
Bảng biến thiên:
Từ đó suy ra yCĐ = y(-2) = 0 ; yCT = y(0) = -108.
Bài 1.12 trang 15 Sách bài tập (SBT) Giải tích 12
Tìm cực trị của các hàm số sau:
a) \(y = {{x + 1} \over {{x^2} + 8}}\)
b) \(y = {{{x^2} - 2x + 3} \over {x - 1}}\)
c) \(y = {{{x^2} + x - 5} \over {x + 1}}\)
d) \(y = {{{{(x - 4)}^2}} \over {{x^2} - 2x + 5}}\)
Hướng dẫn làm bài:
a) TXĐ : R
\(y' = {{{x^2} + 8 - 2x(x + 1)} \over {{{({x^2} + 8)}^2}}} = {{ - {x^2} - 2x + 8} \over {{{({x^2} + 8)}^2}}}\)
\(y' = 0 \Leftrightarrow \left[ \matrix{
x = - 4 \hfill \cr
x = 2 \hfill \cr} \right.\)
Bảng biến thiên:
Hàm số đạt cực đại tại x = 2, cực tiểu tại x = - 4 và \({y_{CD}} = y(2) = {1 \over 4};{y_{CT}} = y( - 4) = - {1 \over 8}\)
b) Hàm số xác định và có đạo hàm với mọi x ≠ 1.
\(y' = {{{x^2} - 2x - 1} \over {{{(x - 1)}^2}}}\)
\(y' = 0 \Leftrightarrow \left[ \matrix{
x = 1 - \sqrt 2 \hfill \cr
x = 1 + \sqrt 2 \hfill \cr} \right.\)
Bảng biến thiên:
Hàm số đạt cực đại tại \(x = 1 - \sqrt 2 \) và đạt cực tiểu tại \(x = 1 + \sqrt 2\) , ta có:
\({y_{CD}} = y(1 - \sqrt 2 ) = - 2\sqrt 2 ;{y_{CT}} = y(1 + \sqrt 2 ) = 2\sqrt 2 \)
c) TXĐ: R\{-1}
\(y' = {{{x^2} + 2x + 6} \over {{{(x + 1)}^2}}} > 0,\forall x \ne - 1\)
Hàm số đồng biến trên các khoảng và do đó không có cực trị.
d) \(y = {{{{(x - 4)}^2}} \over {{x^2} - 2x + 5}}\)
Vì x2 – 2x + 5 luôn luôn dương nên hàm số xác định trên \(( - \infty ; + \infty )\)
\(y' = {{2(x - 4)({x^2} - 2x + 5) - {{(x - 4)}^2}(2x - 2)} \over {{{({x^2} - 2x + 5)}^2}}} = {{2(x - 4)(3x + 1)} \over {{{({x^2} - 2x + 5)}^2}}}\)
\(y' = 0 \Leftrightarrow \left[ \matrix{
x = - {1 \over 3} \hfill \cr
x = 4 \hfill \cr} \right.\)
Bảng biến thiên:
Hàm số đạt cực đại tại \(x = - {1 \over 3}\) , đạt cực tiểu tại x = 4 và \({y_{CD}} = y( - {1 \over 3}) = {{13} \over 4};{y_{CT}} = y(4) = 0\)
Bài 1.13 trang 15 Sách bài tập (SBT) Giải tích 12
Tìm cực trị của các hàm số sau:
a) \(y = x - 6\root 3 \of {{x^2}} \)
b) \(y = (7 - x)\root 3 \of {x + 5}\)
c) \(y = {x \over {\sqrt {10 - {x^2}} }}\)
d) \(y = {{{x^3}} \over {\sqrt {{x^2} - 6} }}\)
Hướng dẫn làm bài:
a) TXĐ: R
\(y' = 1 - {4 \over {\root 3 \of x }} = {{\root 3 \of x - 4} \over {\root 3 \of x }}\)
\(y' = 0 < = > x = 64\)
Bảng biến thiên:
Vậy ta có yCĐ = y(0) = 0 và yCT = y(64) = -32.
b) Hàm số xác định trên khoảng \(( - \infty ; + \infty )\) .
\(y' = - \root 3 \of {x + 5} + {{7 - x} \over {3\root 3 \of {{{(x + 5)}^2}} }} = {{ - 4(x + 2)} \over {3\root 3 \of {{{(x + 5)}^2}} }}\)
Bảng biến thiên:
Vậy \({y_{CD}} = y( - 2) = 9\root 3 \of 3 \)
c) Hàm số xác định trên khoảng \(( - \sqrt {10} ;\sqrt {10} )\) .
\(y' = {{\sqrt {10 - {x^2}} + {{{x^2}} \over {\sqrt {10 - {x^2}} }}} \over {10 - {x^2}}} = {{10} \over {(10 - {x^2})\sqrt {10 - {x^2}} }}\)
Vì y’ > 0 với mọi \(( - \sqrt {10} ;\sqrt {10} )\) nên hàm số đồng biến trên khoảng đó và do đó không có cực trị.
d) TXĐ: \(D = ( - \infty ; - \sqrt 6 ) \cup (\sqrt 6 ; + \infty )\)
\(\eqalign{
& y' = {{3{x^2}\sqrt {{x^2} - 6} - {{{x^4}} \over {\sqrt {{x^2} - 6} }}} \over {{x^2} - 6}} \cr
& = {{3{x^2}({x^2} - 6) - {x^4}} \over {\sqrt {{{({x^2} - 6)}^3}} }} \cr
& = {{2{x^2}({x^2} - 9)} \over {\sqrt {{{({x^2} - 6)}^3}} }} \cr} \)
Bảng biến thiên:
Từ đó ta thấy hàm số đạt cực đại tại x = -3, đạt cực tiểu tại x =- 3 và \({y_{CT}} = y(3) = 9\sqrt 3 ;{y_{CD}} = y( - 3) = - 9\sqrt 3 \)
Bài 1.14 trang 15 Sách bài tập (SBT) Giải tích 12
Tìm cực trị của các hàm số sau:
a) \(y = \sin 2x\)
b) \(y = \cos x - \sin x\)
c) \(y = {\sin ^2}x\)
Hướng dẫn làm bài:
a) \(y = \sin 2x\)
Hàm số có chu kỳ \(T = \pi \)
Xét hàm số \(y = \sin 2x\) trên đoạn \({\rm{[}}0;\pi {\rm{]}}\) , ta có:
\(y' = 2\cos 2x\)
\(y = 0 \Leftrightarrow \left[ \matrix{
x = {\pi \over 4} \hfill \cr
x = {{3\pi } \over 4} \hfill \cr} \right.\)
Bảng biến thiên:
Do đó trên đoạn \({\rm{[}}0;\pi {\rm{]}}\) , hàm số đạt cực đại tại \({\pi \over 4}\) , đạt cực tiểu tại \({{3\pi } \over 4}\) và \({y_{CD}} = y({\pi \over 4}) = 1;\,\,{y_{CT}} = y({{3\pi } \over 4}) = - 1\)
Vậy trên R ta có:
\({y_{CĐ}} = y({\pi \over 4} + k\pi ) = 1;\)
\({y_{CT}} = y({{3\pi } \over 4} + k\pi ) = - 1,k \in Z\)
b)
Hàm số tuần hoàn chu kỳ nên ta xét trên đoạn \({\rm{[}} - \pi ;\pi {\rm{]}}\).
\(\eqalign{
& y' = - \sin x - \cos x \cr
& y' = 0 < => \tan x = - 1 < = > x = - {\pi \over 4} + k\pi ,k \in Z \cr} \)
Lập bảng biến thiên trên đoạn \({\rm{[}} - \pi ;\pi {\rm{]}}\)
Hàm số đạt cực đại tại \(x = - {\pi \over 4} + k2\pi \) , đạt cực tiểu tại \(x = {{3\pi } \over 4} + k2\pi (k \in Z)\) và
\({y_{CĐ}} = y( - {\pi \over 4} + k2\pi ) = \sqrt 2\) ;
\({y_{CT}} = y({{3\pi } \over 4} + k2\pi ) = - \sqrt 2 (k \in Z)\)
c) Ta có: \(y = {\sin ^2}x = {{1 - \cos 2x} \over 2}\)
Do đó, hàm số đã cho tuần hoàn với chu kỳ \(\pi \). Ta xét hàm số \(y = {1 \over 2} - {1 \over 2}\cos 2x\) trên đoạn \({\rm{[}}0;\pi {\rm{]}}\) .
\(\eqalign{
& y' = \sin 2x \cr
& y' = 0 < = > \sin 2x = 0 < = > x = k.{\pi \over 2}(k \in Z) \cr} \)
Lập bảng biến thiên trên đoạn \(\left[ {0,\pi } \right]\)
Từ đó, ta thấy hàm số đạt cực tiểu tại \(x = k.{\pi \over 2}\) với k chẵn, đạt cực đại tại \(x = k.{\pi \over 2}\) với k lẻ, và
\({y_{CT}} = y(2m\pi ) = 0;\)
\({y_{CĐ}} = y((2m + 1){\pi \over 2}) = 1(m \in Z)\)
congdong.edu.vn