Danh mục menu
Lớp 11 - Toán học Giải bài 6, 7, 8, 9, 10 trang 54 Sách giáo khoa Hình học 11

Bài 6 trang 54 SGK Hình học 11

Cho bốn điểm \(A,B,C\) và \(D\) không đồng phẳng. Gọi \(M,N\) lần lượt là trung điểm của \(AC\) và \(BC\). Trên đoạn \(BD\) lấy điểm \(P\) sao cho \(BP=2PD\).

a) Tìm giao điểm của đường thẳng \(CD\) và mặt phẳng \((MNP)\).

b) Tìm giao tuyến của hai mặt phẳng \((MNP)\) và \((ACD)\).

Giải

4

a) Trong \((BCD)\), gọi \(I\) là giao điểm của \(NP\) và \(CD\).

\(I\in NP\subset (MNP)\) do đó \(CD\cap (MNP)=I\).

b) Trong \((ACD)\), gọi \(J=MI\cap AD\)

\(J\in AD\subset (ACD)\), \(M\in AC\subset (ACD)\)

Do đó \((MNP)\cap(ACD)=MI\).

 

Bài 7 trang 54 sách giáo khoa hình học lớp 11

Cho bốn điểm \(A, B, C\) và \(D\) không đồng phẳng. Gọi \(I,K\) lần lượt là trung điểm của hai đoạn thẳng \(AD\) và \(BC\)

a) Tìm giao tuyến của hai mặt phẳng \((IBC)\) và \((KAD)\)

b) Gọi \(M\) và \(N\) là hai điểm lần lượt lấy trên hai đoạn thẳng \(AB\) và \(AC\). Tìm giao tuyến của hai mặt phẳng \((IBC)\) và \((DMN)\).

Lời giải:

a) Chứng minh \(I, K\) là hai điểm chung của \((BIC)\) và \((AKD)\)

\(I\in AD\Rightarrow I\in(KAD)\Rightarrow I\in(KAD)\cap (IBC)\),

\(K\in BC\Rightarrow K\in(BIC)\Rightarrow K\in(KAD)\cap (IBC)\),

Hay \(KI=(KAD)\cap (IBC)\)

b) Trong \(ACD)\) gọi \(E = CI ∩ DN\Rightarrow E\in (IBC)\cap (DMN)\)

Trong \((ABD)\) gọi \(F = BI ∩ DM\Rightarrow F\in (IBC)\cap (DMN)\).

Do đó \(EF=(IBC)\cap (DMN)\)

 

Bài 8 trang 54 sách giáo khoa hình học lớp 11

Cho tứ diện \(ABCD\). Gọi \(M\) và \(N\) lần lượt là trung điểm của các cạnh \(AB\) và \(CD\) trên cạnh \(AD\) lấy điểm \(P\) không trùng với trung điểm của \(AD\)

a) Gọi \(E\) là giao điểm của đường thẳng \(MP\) và đường thẳng \(BD\). Tìm giao tuyến của hai mặt phẳng \((PMN)\) và \((BCD)\)

b) Tìm giao điểm của mặt phẳng \((PMN)\) và \(BC\).

Lời giải:

a) Ta có \(E\in BD\Rightarrow E\in(BCD)\)

\(E\in MP\Rightarrow E\in(PMN)\)

Do đó: \(E\in (BCD)\cap(PMN)\)

\(N\in CD\Rightarrow N\in(BCD)\)

\(N \in(PMN)\)

Do đó: \(N\in (BCD)\cap(PMN)\)

\(=> (PMN) ⋂ (BCD) = EN\)

b) Trong mặt phẳng \((BCD)\) gọi \(Q\) là giao điểm của \(NE\) và \(BC\) thì \(Q\) là giao điểm của \((PMN)\) và \(BC\).

 

Bài 9 trang 54 sách giáo khoa hình học lớp 11

Cho hình chóp \(S.ABCD\) có đáy là hình bình hành \(ABCD\). Trong mặt phẳng đáy vẽ đường thẳng \(d\) đi qua \(A\) và không song song với các cạnh của hình bình hành, \(d\) cắt đoạn \(BC\) tại \(E\). Gọi \(C'\) là một điểm nằm trên cạnh \(SC\)

a) Tìm giao điểm \(M\) của \(CD\) và mặt phẳng \((C'AE)\)

b) Tìm thiết diện của hình chóp cắt bởi mặt phẳng \((C'AE)\)

Lời giải:

a) Trong \((ABCD)\) gọi \(M = AE ∩ DC \Rightarrow M ∈ AE\),

\(AE ⊂ ( C'AE) \Rightarrow M ∈ ( C'AE)\).

Mà \(M ∈ CD \Rightarrow M = DC ∩ (C'AE)\)

b) Trong \((SDC) : MC' ∩ SD = F\). Do đó thiết diện là \(AEC'F\).

 

Bài 10 trang 54 sách giáo khoa hình học lớp 11

Cho hình chóp \(S. ABCD\) có \(AB\) và \(CD\) không song song. Gọi \(M\) là một điểm thuộc miền trong của tam giác \(SCD\)

a) Tìm giao điểm \(N\) của đường thẳng \(CD\) và mặt phẳng \((SBM)\)

b) Tìm giao tuyến của hai mặt phẳng \((SBM)\) và \((SAC)\)

c) Tìm giao điểm \(I\) của đường thẳng \(BM\) và mặt phẳng \((SAC)\)

d) Tìm giao điểm \(P\) của \(SC\) và mặt phẳng \((ABM)\), từ đó suy ra giao tuyến của hai mặt phẳng \((SCD)\) và \((ABM)\)

Lời giải:

a) Trong \((SCD)\) kéo dài \(SM\) cắt \(CD\) tại \(N\). Do đó: \(N=CD\cap(SBM)\)

b) \((SBM) ≡ (SBN)\).

Trong \((ABCD)\) gọi \(O=AC\cap BN\)

Do đó: \(SO=(SAC)\cap(SBM)\).

c) Trong \((SBN)\) gọi \(I\) là giao của \(MB\) và \(SO\).

Do đó: \(I=BM\cap (SAC)\)

d) Trong \((ABCD)\) , gọi giao điểm của \(AB\) và \(CD\) là \(K\).

Trong \((SCD)\), gọi \(P= MK\cap SC\)

Do đó: \(P=SC\cap (ABM)\)

Trong \((SDC)\) gọi \(Q=MK\cap SD\)

Từ đó suy ra được giao tuyến của hai mặt phẳng \((SCD)\) và (\(ABM)\) là \(KQ\).

                                              congdong.edu.vn


Giáo trình
Thể loại: Lớp 11
Số bài: 69

Bạn cần hỗ trợ? Nhấc máy lên và gọi ngay cho chúng tôi -hotline@tnn.vn
hoặc

  Hỗ trợ trực tuyến

Giao hàng toàn quốc

Bảo mật thanh toán

Đổi trả trong 7 ngày

Tư vẫn miễn phí