Danh mục menu
Lớp 11 - Toán học Giải bài 1, 2, 3 trang 15 Sách giáo khoa Hình học 11

Bài 1 trang 15 sách giáo khoa hình học lớp 11

Trong mặt phẳng tọa độ \(Oxy\) cho điểm \(A(-1;3)\) và đường thẳng \(d\) có phương trình \(x-2y + 3 = 0\). Tìm ảnh của \(A\) và \(d\) qua phép đối xứng tâm \(O\).

Lời giải:

Dễ thấy \(A'\) = \({D_{O}}(A) = (1;-3)\)

Để tìm ảnh của đường thẳng \(d\) ta có thể dùng các cách sau:

Cách 1:

Đường thẳng \(d\) đi qua \(B(-3;0)\) và \(C (-1;1)\). Do đó ảnh của \(d\) qua phép đối xứng tâm \(O\) là đường thẳng \(d'\) đi qua \(B' = {D_{O}}(B) = (3;0)\) và \(C' = {D_{O}}(C) = (1;-1)\). suy ra phương trình của \(d'\) là: \( \frac{x-3}{1-3}\) = \( \frac{y}{-1}\) hay \(x - 2y - 3= 0\)

Cách 2:

Đường thẳng \(d\) đi qua \(B(-3;0)\), \(d'\) là ảnh của d qua phép đối xứng tâm \(O\) nên nó song song với \(d\). Do đó \(d'\) có phương trình \(x- 2y +C =0\), nó đi qua \(B' =( 3;0)\) là ảnh của \(B\) qua phép đối xứng tâm \(O\). Do đó \(3+C=0\). Từ đó suy ra \(C = -3\)

Vậy ảnh của \(d\) qua phép đối xứng tâm \(O\) là đường thẳng \(d'\) có phương trình \(x-2y-3=0\)

 

 

Bài 2 trang 15 sách giáo khoa hình học 11

Các hình tam giác đều, hình bình hành, ngũ giác đều, lục giác đều, hình nào có tâm đối xứng?

Lời giải:

Hình bình hành và lục giác đều là những hình có tâm đối xứng.

 

Bài 3 trang 15 sách giáo khoa hình học lớp 11

Tìm một hình có vô số tâm đối xứng?

Lời giải:

Đường thẳng, hình gồm hai đường thẳng song song là những hình có vô số tâm đối xứng.

                                                                                              congdong.edu.vn


Giáo trình
Thể loại: Lớp 11
Số bài: 69

Bạn cần hỗ trợ? Nhấc máy lên và gọi ngay cho chúng tôi -hotline@tnn.vn
hoặc

  Hỗ trợ trực tuyến

Giao hàng toàn quốc

Bảo mật thanh toán

Đổi trả trong 7 ngày

Tư vẫn miễn phí